Direct observation of spin accumulation and spin-orbit torque driven by Rashba-Edelstein effect in an InAs quantum-well layer

Authors
Lee, W.-B.Kim, S.B.Kim, K.-W.Lee, K.-J.Koo, H.C.Choi, G.-M.
Issue Date
2021-11-08
Publisher
AMER PHYSICAL SOC
Citation
Physical Review B, v.104, no.18
Abstract
For semiconductor spintronics, efficient spin generation in semiconductor and spin transfer to ferromagnetic metal (FM) are essentially required. Two-dimensional electron gas (2DEG) of semiconductor quantum wells is a promising system for generating spin via the Rashba-Edelstein effect (REE) because of its strong inversion symmetry breaking. In this study, we investigate spin accumulation through REE and spin Hall effect (SHE) in the 2DEG of an InAs quantum well. We use spatial- and polarization-resolved measurements of spin, which reveals that REE dominates SHE in 2DEG. Furthermore, REE in 2DEG induces a spin-orbit torque on FM in a 2DEG/insulator/FM heterostructure. Using direction- and time-resolved measurements of FM magnetization, we determine a sizeable fieldlike torque, which is attributed to the phonon-mediated spin transport from 2DEG to FM. ? 2021 American Physical Society.
Keywords
CONDUCTION ELECTRONS; MAGNETIZATION; POLARIZATION; ORIENTATION; PRECESSION; CONVERSION; RESONANCE; spin accumulation; InAs quantum-well; Rashba-Edelstein effect
ISSN
2469-9950
URI
https://pubs.kist.re.kr/handle/201004/116141
DOI
10.1103/PhysRevB.104.184412
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE