Full metadata record

DC Field Value Language
dc.contributor.authorJang, Jue-Hyuk-
dc.contributor.authorJeffery, A. Anto-
dc.contributor.authorMin, Jiho-
dc.contributor.authorJung, Namgee-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T14:01:19Z-
dc.date.available2024-01-19T14:01:19Z-
dc.date.created2022-01-10-
dc.date.issued2021-09-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116523-
dc.description.abstractThe development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleEmerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis-
dc.typeArticle-
dc.identifier.doi10.1039/d1nr01328a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanoscale, v.13, no.36, pp.15116 - 15141-
dc.citation.titleNanoscale-
dc.citation.volume13-
dc.citation.number36-
dc.citation.startPage15116-
dc.citation.endPage15141-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000686261500001-
dc.identifier.scopusid2-s2.0-85116069208-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview; Early Access-
dc.subject.keywordPlusNITROGEN-DOPED CARBON-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusHYDROGEN EVOLUTION REACTION-
dc.subject.keywordPlusANION-EXCHANGE MEMBRANE-
dc.subject.keywordPlusENHANCED ELECTROCATALYTIC ACTIVITY-
dc.subject.keywordPlusBIFUNCTIONAL ELECTROCATALYSTS-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusCORE-SHELL-
dc.subject.keywordPlusDURABLE ELECTROCATALYST-
dc.subject.keywordPlusBIMETALLIC NANOPARTICLES-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE