Full metadata record

DC Field Value Language
dc.contributor.authorSon, Myungwoo-
dc.contributor.authorJang, Jaewon-
dc.contributor.authorKim, Gi-Hwan-
dc.contributor.authorLee, Ji-Hwan-
dc.contributor.authorChun, Dong Won-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorKim, In S.-
dc.contributor.authorHam, Moon-Ho-
dc.contributor.authorChee, Sang-Soo-
dc.date.accessioned2024-01-19T14:31:18Z-
dc.date.available2024-01-19T14:31:18Z-
dc.date.created2021-10-21-
dc.date.issued2021-06-
dc.identifier.issn2637-6113-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116846-
dc.description.abstractHerein, we introduced surface modification of a Cu catalyst by employing CH4 pre-annealing, which changed the uniformly rough Cu surface; this resulted in formation of high-quality and uniform Bernal-stacked bilayer graphene as well as monolayer graphene due to controlled synthesis time. A well-designed Cu surface was developed for synthesis of bilayer graphene with high coverage (>95%) and a high Bernal-stacking ratio (similar to 99%). Dual-gated transistors of Bernal-stacked bilayer graphene showed typical tunable transfer characteristics under varying gate voltages with carrier mobilities of 1000-2000 cm(2) V-1 s(-1). Through density functional theory calculations, we demonstrated that a uniformly rough Cu surface is favorable for synthesis of Bernal-stacked bilayer graphene. Finally, we employed bilayer graphene as a perfect diffusion barrier facilitated by complementing the diffusion pathway of numerous grain boundaries in graphene.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleLarge-Area Bernal-Stacked Bilayer Graphene Film on a Uniformly Rough Cu Surface via Chemical Vapor Deposition-
dc.typeArticle-
dc.identifier.doi10.1021/acsaelm.0c00905-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED ELECTRONIC MATERIALS, v.3, no.6, pp.2497 - 2503-
dc.citation.titleACS APPLIED ELECTRONIC MATERIALS-
dc.citation.volume3-
dc.citation.number6-
dc.citation.startPage2497-
dc.citation.endPage2503-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000665655800007-
dc.identifier.scopusid2-s2.0-85106663759-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusHIGH-QUALITY-
dc.subject.keywordPlusNI ALLOY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusEQUILIBRIUM-
dc.subject.keywordPlusPENETRATION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusBANDGAP-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordAuthorbilayer graphene-
dc.subject.keywordAuthorBernal-stacking-
dc.subject.keywordAuthorbandgap-
dc.subject.keywordAuthorCH4 pre-annealing-
dc.subject.keywordAuthoruniformly rough Cu surface-
dc.subject.keywordAuthordiffusion barrier-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE