A novel mineralocorticoid receptor antagonist, 7,3 ',4 '-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids

Authors
Lee, HanilChoi, Eun-JeongKim, Eun JungSon, Eui DongKim, Hyoung-JunePark, Won-SeokKang, Young-GyuShin, Kyong-OhPark, KyunghoKim, Jin-ChulKim, Su-NamChoi, Eung Ho
Issue Date
2021-06
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.11, no.1
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Keywords
11-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE-1; PSYCHOLOGICAL STRESS; LIPID-MEMBRANES; ATOPIC ECZEMA; PERMEABILITY; LOCALIZATION; ALDOSTERONE; HOMEOSTASIS; ACTIVATION; CERAMIDES
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/116911
DOI
10.1038/s41598-021-91450-6
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE