Full metadata record

DC Field Value Language
dc.contributor.authorChung, Justin J.-
dc.contributor.authorYoo, Jin-
dc.contributor.authorSum, Brian S. T.-
dc.contributor.authorLi, Siwei-
dc.contributor.authorLee, Soojin-
dc.contributor.authorKim, Tae Hee-
dc.contributor.authorLi, Zhenlun-
dc.contributor.authorStevens, Molly M.-
dc.contributor.authorGeorgiou, Theoni K.-
dc.contributor.authorJung, Youngmee-
dc.contributor.authorJones, Julian R.-
dc.date.accessioned2024-01-19T14:32:57Z-
dc.date.available2024-01-19T14:32:57Z-
dc.date.created2021-09-04-
dc.date.issued2021-06-
dc.identifier.issn2192-2640-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116946-
dc.description.abstractInorganic-organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica(,) which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO2 hybrid inks are printed with pore channels in the range of 100-200 mu m. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions. Osteogenic and angiogenic properties of the hybrid scaffolds are shown using a rat calvarial defect model. Hybrid scaffolds with 40:60 inorganic:organic composition are able to instigate new vascularized bone formation within its pore channels and polarize macrophages toward M2 phenotype. 3D printing inorganic-organic hybrids with sophisticated polymer structure opens up possibilities to produce novel bone graft materials.-
dc.languageEnglish-
dc.publisherWiley-Blackwell-
dc.title3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution-
dc.typeArticle-
dc.identifier.doi10.1002/adhm.202100117-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Healthcare Materials, v.10, no.12-
dc.citation.titleAdvanced Healthcare Materials-
dc.citation.volume10-
dc.citation.number12-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000647193600001-
dc.identifier.scopusid2-s2.0-85105326225-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthorbiomaterials-
dc.subject.keywordAuthorbone substitutes-
dc.subject.keywordAuthorhybrids-
dc.subject.keywordAuthorsol&#8208-
dc.subject.keywordAuthorgels-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE