Effect of Cr addition on room temperature hydrogenation of TiFe alloys

Authors
Jung, Jee YunLee, Sang-InFaisal, MohammadKim, HayoungLee, Young-SuSuh, Jin-YooShim, Jae-HyeokHuh, Joo-YoulCho, Young Whan
Issue Date
2021-05-28
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.46, no.37, pp.19478 - 19485
Abstract
This paper discusses the effect of AB2 (Ti(Cr, Fe)2) phase on the hydrogenation properties of a Ti -Fe-Cr alloy system. Five Ti-Fe-Cr based alloys were fabricated by varying the Cr content. The microstructural analysis results revealed that the fraction of the Ti(Cr, Fe)2 phase increased with the increasing Cr content. The first hydrogenation test results indicated that all the alloys could absorb a significant amount of hydrogen at room temperature (30 degrees C) without a separate activation process. This behavior improved when the Ti(Cr, Fe)2 phase existed in the AB phase; the kinetics of the first hydrogenation tended to increase with the fraction of Ti(Cr, Fe)2 phase. The enhancement in the first hydrogenation kinetics of the Ti-Fe-Cr based alloys was attributed to the synergetic effect of the interface between the AB and Ti(Cr, Fe)2 phases and the inherent fast hydrogenation of the Ti(Cr, Fe)2 phase. However, the total hydrogen storage capacity decreased when the fraction of Ti(Cr, Fe)2 phase increased. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords
STORAGE PROPERTIES; HYDRIDING CHARACTERISTICS; FETI; ACTIVATION; MN; MICROSTRUCTURE; OXYGEN; ZR; STORAGE PROPERTIES; HYDRIDING CHARACTERISTICS; FETI; ACTIVATION; MN; MICROSTRUCTURE; OXYGEN; ZR; Hydrogen storage alloy; TiFe alloy; Activation; Pressure-composition isotherm
ISSN
0360-3199
URI
https://pubs.kist.re.kr/handle/201004/116971
DOI
10.1016/j.ijhydene.2021.03.096
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE