Full metadata record

DC Field Value Language
dc.contributor.authorArdhi, Ryanda Enggar Anugrah-
dc.contributor.authorLiu, Guicheng-
dc.contributor.authorLee, Joong Kee-
dc.date.accessioned2024-01-19T15:01:45Z-
dc.date.available2024-01-19T15:01:45Z-
dc.date.created2021-09-04-
dc.date.issued2021-04-09-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117141-
dc.description.abstractLi-metal is an attractive anode material for next-generation batteries owing to its high capacity and low reduction potential. Unfortunately, it undergoes dendritic growth, which limits its development. Herein, amorphous polymeric carbon-based semiconducting passivation layers are applied to Li-metal electrodes using radiofrequency plasma thermal evaporation to suppress dendrite growth. The plasma power is controlled to adjust the semiconducting type and mechanical properties of the plasma-polymerized carbon layer (PCL). n- and p-type semiconducting PCLs (n- and p-PCLs) form ohmic and Schottky contacts, respectively, with the Li-metal. p-PCL was more effective than n-PCL at suppressing Li-dendrite formation, as the former enhanced the modulus and Li-ion conductivity, inducing Liion deposition below the passivation layer. The p-PCL-coated Li electrode maintains state-of-the-art stable dendrite-free cycling behavior with overpotentials of similar to 11.10 and similar to 79.84 mV over 16 450 and 2472 h at 1 and 10 mA cm(-2), respectively.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectLITHIUM METAL-
dc.subjectANODE-
dc.subjectCONDUCTIVITY-
dc.subjectINTERPHASES-
dc.subjectDEPOSITION-
dc.subjectGRAPHITE-
dc.subjectFILM-
dc.titleMetal-Semiconductor Ohmic and Schottky Contact Interfaces for Stable Li-Metal Electrodes-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.1c00150-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.6, no.4, pp.1432 - 1442-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume6-
dc.citation.number4-
dc.citation.startPage1432-
dc.citation.endPage1442-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000639063800024-
dc.identifier.scopusid2-s2.0-85106103221-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM METAL-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusINTERPHASES-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusFILM-
dc.subject.keywordAuthorMetal-Semiconductor-
dc.subject.keywordAuthorOhimic and Schottky contact-
dc.subject.keywordAuthorInterface-
dc.subject.keywordAuthorStable-
dc.subject.keywordAuthorLi-Metal Electrodes-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE