Full metadata record

DC Field Value Language
dc.contributor.authorSo, B.-
dc.contributor.authorLee, J.-
dc.contributor.authorCheon, C.-
dc.contributor.authorLee, J.-
dc.contributor.authorChoi, U.-
dc.contributor.authorKim, M.-
dc.contributor.authorSong, J.-
dc.contributor.authorChang, J.-
dc.contributor.authorNam, O.-
dc.date.accessioned2024-01-19T15:01:58Z-
dc.date.available2024-01-19T15:01:58Z-
dc.date.created2021-10-21-
dc.date.issued2021-04-01-
dc.identifier.issn2158-3226-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117152-
dc.description.abstractCreating voids between thin films is a very effective method to improve thin film crystal quality. However, for AlN material systems, the AlN layer growth, including voids, is challenging because of the very high Al atom sticking coefficient. In this study, we demonstrated an AlN template with many voids grown on AlN nanorods made by polarity selective epitaxy and etching methods. We introduced a low V/III ratio and NH3 pulsed growth method to demonstrate high-quality coalesced AlN templates grown on AlN nanorods in a metal organic chemical vapor deposition reactor. The crystal quality and residual strain of AlN were enhanced by the void formations. It is expected that this growth method can contribute to the demonstration of high-performance deep UV LEDs and transistors. ? 2021 Author(s).-
dc.languageEnglish-
dc.publisherAmerican Institute of Physics Inc.-
dc.subjectAmmonia-
dc.subjectCrystals-
dc.subjectEtching-
dc.subjectIII-V semiconductors-
dc.subjectMetallorganic chemical vapor deposition-
dc.subjectNanorods-
dc.subjectOrganic chemicals-
dc.subjectOrganometallics-
dc.subjectSuperconducting films-
dc.subjectThin films-
dc.subjectAlN-layer grown-
dc.subjectCrystal qualities-
dc.subjectEtching method-
dc.subjectMaterial systems-
dc.subjectResidual strains-
dc.subjectSelective epitaxy-
dc.subjectSticking coefficients-
dc.subjectVoid formation-
dc.subjectAluminum nitride-
dc.titleVoid containing AlN layer grown on AlN nanorods fabricated by polarity selective epitaxy and etching method-
dc.typeArticle-
dc.identifier.doi10.1063/5.0042631-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAIP Advances, v.11, no.4-
dc.citation.titleAIP Advances-
dc.citation.volume11-
dc.citation.number4-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000715297000002-
dc.identifier.scopusid2-s2.0-85105707725-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusAmmonia-
dc.subject.keywordPlusCrystals-
dc.subject.keywordPlusEtching-
dc.subject.keywordPlusIII-V semiconductors-
dc.subject.keywordPlusMetallorganic chemical vapor deposition-
dc.subject.keywordPlusNanorods-
dc.subject.keywordPlusOrganic chemicals-
dc.subject.keywordPlusOrganometallics-
dc.subject.keywordPlusSuperconducting films-
dc.subject.keywordPlusThin films-
dc.subject.keywordPlusAlN-layer grown-
dc.subject.keywordPlusCrystal qualities-
dc.subject.keywordPlusEtching method-
dc.subject.keywordPlusMaterial systems-
dc.subject.keywordPlusResidual strains-
dc.subject.keywordPlusSelective epitaxy-
dc.subject.keywordPlusSticking coefficients-
dc.subject.keywordPlusVoid formation-
dc.subject.keywordPlusAluminum nitride-
dc.subject.keywordAuthorvoid-
dc.subject.keywordAuthorAlN-
dc.subject.keywordAuthornanorod-
dc.subject.keywordAuthorpolarity selective epitaxy-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE