Ultrafast mode-locking in highly stacked Ti3C2Tx MXenes for 1.9-mu m infrared femtosecond pulsed lasers

Authors
Jhon, Young InLee, JinhoJhon, Young MinLee, Ju Han
Issue Date
2021-04
Publisher
WALTER DE GRUYTER GMBH
Citation
NANOPHOTONICS, v.10, no.6, pp.1741 - 1751
Abstract
Metallic 2D materials can be promising saturable absorbers for ultrashort pulsed laser production in the long wavelength regime. However, preparing and manipulating their 2D structures without layer stacking have been nontrivial. Using a combined experimental and theoretical approach, we demonstrate here that a metallic titanium carbide (Ti3C2Tx), the most popular MXene 2D material, can have excellent nonlinear saturable absorption properties even in a highly stacked state due to its intrinsically existing surface termination, and thus can produce mode-locked femtosecond pulsed lasers in the 1.9-mu m infrared range. Density functional theory calculations reveal that the electronic and optical properties of Ti3C2Tx MXene can be well preserved against significant layer stacking. Indeed, it is experimentally shown that 1.914-mu m femtosecond pulsed lasers with a duration of 897 fs are readily generated within a fiber cavity using hundreds-of-layer stacked Ti3C2Tx MXene saturable absorbers, not only being much easier to manufacture than mono- or few-layered ones, but also offering character-conserved tightly-assembled 2D materials for advanced performance. This work strongly suggests that as-obtained highly stacked Ti3C2Tx MXenes can serve as superb material platforms for versatile nanophotonic applications, paving the way toward cost-effective, high-performance photonic devices based on MXenes.
Keywords
DOPED FIBER LASER; FEW-LAYER MOS2; SATURABLE ABSORBER; GRAPHENE; ABSORPTION; DELAMINATION; EXFOLIATION; GENERATION; NANOSHEETS; WS2; DOPED FIBER LASER; FEW-LAYER MOS2; SATURABLE ABSORBER; GRAPHENE; ABSORPTION; DELAMINATION; EXFOLIATION; GENERATION; NANOSHEETS; WS2; femtosecond mode-locked laser; 1.9-mu m infrared laser; layer stacking; 2D material; saturable absorber; Ti3C2Tx MXene
ISSN
2192-8606
URI
https://pubs.kist.re.kr/handle/201004/117188
DOI
10.1515/nanoph-2020-0678
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE