Full metadata record

DC Field Value Language
dc.contributor.authorJin, Da Woon-
dc.contributor.authorKo, Young Joon-
dc.contributor.authorAhn, Chang Won-
dc.contributor.authorHur, Sunghoon-
dc.contributor.authorLee, Tae Kwon-
dc.contributor.authorJeong, Dong Geun-
dc.contributor.authorLee, Minbaek-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorJung, Jong Hoon-
dc.date.accessioned2024-01-19T15:02:54Z-
dc.date.available2024-01-19T15:02:54Z-
dc.date.created2021-09-05-
dc.date.issued2021-04-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/117197-
dc.description.abstractWhile piezoelectric nanogenerators have demonstrated the effective conversion of tiny mechanical vibrations to electricity, their performances are rarely examined under harsh environmental conditions. Here, a multilayered polyvinylidene fluoride (PVDF) film-based piezoelectric nanogenerator (ML-PENG) is demonstrated to generate considerable and stable power outputs even at extremely low temperatures and pressures, and under strong UV. Up-/down-polarized PVDF films are alternately stacked, and Ag electrodes are intercalated between the two adjacent films. At -266 degrees C and 10(-5) Torr, the ML-PENG generates an open-circuit voltage of 1.1 V, a short-circuit current density of 8 nA cm(-2), and a power density of 4.4 nW cm(-2). The piezoelectric outputs are quite stable against prolonged illumination of UV, large temperature- and pressure-variations, and excessive mechanical vibrations. The piezoelectric power density is greatly enhanced above the freezing and glass transition temperatures of PVDF and recorded to be 10, 105, and 282 nW cm(-2) at -73, 0, and 77 degrees C, respectively. The ML-PENG generates sufficient power to operate five light-emitting diodes by harvesting biomechanical energy under simulated Martian conditions. This work suggests that polarization- and electrode-optimized ML-PENG can serve as a reliable and economic power source in harsh and inaccessible environments like polar areas of Earth and extraterrestrial Mars.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titlePolarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202007289-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSMALL, v.17, no.14-
dc.citation.titleSMALL-
dc.citation.volume17-
dc.citation.number14-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000627503200001-
dc.identifier.scopusid2-s2.0-85102495392-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorharsh environment-
dc.subject.keywordAuthorinaccessible location-
dc.subject.keywordAuthorMars-
dc.subject.keywordAuthorpiezoelectric nanogenerator-
dc.subject.keywordAuthorpolyvinylidene fluoride-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE