Neel-type skyrmions and their current-induced motion in van derWaals ferromagnet-based heterostructures
- Authors
- Park, Tae-Eon; Peng, Licong; Liang, Jinghua; Hallal, Ali; Yasin, Fehmi Sami; Zhang, Xichao; Song, Kyung Mee; Kim, Sung Jong; Kim, Kwangsu; Weigand, Markus; Schutz, Gisela; Finizio, Simone; Raabe, Jorg; Garcia, Karin; Xia, Jing; Zhou, Yan; Ezawa, Motohiko; Liu, Xiaoxi; Chang, Joonyeon; Koo, Hyun Cheol; Kim, Young Duck; Chshiev, Mairbek; Fert, Albert; Yang, Hongxin; Yu, Xiuzhen; Woo, Seonghoon
- Issue Date
- 2021-03-05
- Publisher
- AMER PHYSICAL SOC
- Citation
- Physical Review B, v.103, no.10
- Abstract
- Since the discovery of ferromagnetic two-dimensional (2D) van der Waals (vdW) crystals, significant interest on such 2D magnets has emerged, inspired by their appealing physical properties and integration with other 2D family for unique heterostructures. In known 2D magnets, spin-orbit coupling (SOC) stabilizes perpendicular magnetic anisotropy down to one or a few monolayers. Such a strong SOC could also lift the chiral degeneracy, leading to the formation of topological magnetic textures such as skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here, we report the experimental observation of Neel-type chiral magnetic skyrmions and their lattice (SkX) formation in a vdW ferromagnet Fe3GeTe2 (FGT). We demonstrate the ability to drive an individual skyrmion by short current pulses along a vdW heterostructure, FGT/h-BN, as highly required for any skyrmion-based spintronic device. Using first principle calculations supported by experiments, we unveil the origin of DMI being the interfaces with oxides, which then allows us to engineer vdW heterostructures for desired chiral states. Our finding opens the door to topological spin textures in the 2D vdW magnet and their potential device application.
- Keywords
- INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SPIN-ORBIT TORQUES; CRYSTAL; TRANSITION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SPIN-ORBIT TORQUES; CRYSTAL; TRANSITION
- ISSN
- 2469-9950
- URI
- https://pubs.kist.re.kr/handle/201004/117270
- DOI
- 10.1103/PhysRevB.103.104410
- Appears in Collections:
- KIST Article > 2021
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.