Simultaneous crosslinking induces macroscopically phase-separated microgel from a homogeneous mixture of multiple polymers
- Authors
- Kurashina, Yuta; Tsuchiya, Mio; Sakai, Atsushi; Maeda, Tomoki; Heo, Yun Jung; Rossi, Filippo; Choi, Nakwon; Yanagisawa, Miho; Onoe, Hiroaki
- Issue Date
- 2021-03
- Publisher
- ELSEVIER
- Citation
- APPLIED MATERIALS TODAY, v.22
- Abstract
- This paper reports a unique phase separation behavior, a simultaneous-crosslinking-driven phase separation in co-gelation (SPSiC) core-shell microgel that spontaneously forms from a homogeneous pre gel solution of multiple polymers. The SPSiC microgel, composed of an alginate shell and an N- isopropylacrylamide (NIPAM) core, were synthesized by a single fabrication step wherein a mixed pre-gel solution of sodium alginate and NIPAM monomer was ejected by centrifugation with photo polymerization and ion crosslinking instantaneously. Phase separation was modeled by varying the degree of polymerization and the size of the polymer chain. Moreover, an implantable, multi-functional drug delivery system combined with a transdermal glucose sensor was demonstrated with core-shell Janus SPSiC microgels. This work shows a macroscopic phase separation behavior, which occurs during the gelation process, and also provides a simple and unique methodology to create multifunctional bio-microprobes. (c) 2021 Elsevier Ltd. All rights reserved.
- Keywords
- SYNTHETIC EXTRACELLULAR-MATRIX; HYDROGEL; CORE; PARTICLES; SHELL; MORPHOLOGY; SCAFFOLD; RELEASE; ALLOYS; Phase separation; Hydrogel; Core?shell structure; Microfluidics; Biosensor
- ISSN
- 2352-9407
- URI
- https://pubs.kist.re.kr/handle/201004/117283
- DOI
- 10.1016/j.apmt.2021.100937
- Appears in Collections:
- KIST Article > 2021
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.