Combination of cancer-specific prodrug nanoparticle with Bcl-2 inhibitor to overcome acquired drug resistance

Authors
Kim, JinseongShim, Man KyuYang, SuahMoon, YujeongSong, SukyungChoi, JiwoongKim, JeongraeKim, Kwangmeyung
Issue Date
2021-02-10
Publisher
ELSEVIER
Citation
JOURNAL OF CONTROLLED RELEASE, v.330, pp.920 - 932
Abstract
Multiple combination therapies with chemotherapeutic drugs and inhibitors of drug resistance have been effective in the clinical cases, but concerns have been raised about the severe toxicity of these chemotherapeutic drugs. Herein, we report a potent and safe combination strategy of cancer-specific doxorubicin (DOX) prodrug nanoparticles (PNPs) and B-cell lymphoma-2 (Bcl-2) anti-apoptotic inhibitor, Navitoclax, to overcome acquired drug resistance during chemotherapy. The cancer-specific PNPs were constructed by conjugating cathepsin B-specific cleavable peptide (Phe-Arg-Arg-Gly; FRRG) to DOX, resulting in FRRG-DOX that self-assembled into nanoparticles and the FRRG-DOX nanoparticles were further stabilized with the FDA-approved pharmaceutical excipient, Pluronic F68. The resulting PNPs are specifically cleaved and metabolized to free DOX in cathepsin B-overexpressing cancer cells, but they exhibited minimal cytotoxicity in cathepsin B-deficient normal cells. As expected, free DOX and PNPs induced overexpression of Bcl-2 in MDA-MB-231 cells, due to acquired drug resistance in a cell culture system. However, combination therapy with PNPs and Navitoclax showed the outstanding synergetic cytotoxicity by decreasing the expression level of Bcl-2. In MDA-MB231 breast tumor-bearing mice, intravenously injected PNPs efficiently accumulated in targeted tumor tissues via enhanced permeability and retention (EPR) effect. When combined with orally administered Navitoclax, PNPs exhibited more potent therapeutic efficacy in aquired drug resistant models than free DOX plus Navitoclax, whereas PNPs greatly reduced systemic toxic side effects in normal organs. Our cancer-specific PNP-based combination therapy with Bcl-2 inhibitor may provide a promising approach for the potent and safe treatment of acquired drug-resistant cancers.
Keywords
Cancer-specific prodrug nanoparticles; Bcl-2 inhibitor; Combination therapy; Inhibitor of drug resistance; Drug resistance
ISSN
0168-3659
URI
https://pubs.kist.re.kr/handle/201004/117409
DOI
10.1016/j.jconrel.2020.10.065
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE