Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer's Disease

Authors
Rahman, Md. AtaurRahman, MD. HasanurBiswas, ParthaHossain, Md. ShahadatIslam, RokibulHannan, Md. AbdulUddin, Md JamalRhim, Hyewhon
Issue Date
2021-01
Publisher
MDPI AG
Citation
Antioxidants, v.10, no.1
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a decline in cognitive function and neuronal damage. Although the precise pathobiology of AD remains elusive, accumulating evidence suggests that mitochondrial dysfunction is one of the underlying causes of AD. Mutations in mitochondrial or nuclear DNA that encode mitochondrial components may cause mitochondrial dysfunction. In particular, the dysfunction of electron transport chain complexes, along with the interactions of mitochondrial pathological proteins are associated with mitochondrial dysfunction in AD. Mitochondrial dysfunction causes an imbalance in the production of reactive oxygen species, leading to oxidative stress (OS) and vice versa. Neuroinflammation is another potential contributory factor that induces mitochondrial dysfunction. Phytochemicals or other natural compounds have the potential to scavenge oxygen free radicals and enhance cellular antioxidant defense systems, thereby protecting against OS-mediated cellular damage. Phytochemicals can also modulate other cellular processes, including autophagy and mitochondrial biogenesis. Therefore, pharmacological intervention via neuroprotective phytochemicals can be a potential strategy to combat mitochondrial dysfunction as well as AD. This review focuses on the role of phytochemicals in mitigating mitochondrial dysfunction in the pathogenesis of AD.
Keywords
DIETARY KETONE ESTER; 3XTGAD MOUSE MODEL; OXIDATIVE STRESS; AMYLOID-BETA; A-BETA; NEURODEGENERATIVE DISEASES; COGNITIVE IMPAIRMENT; SIGNALING PATHWAY; CLINICAL-TRIAL; TAU PATHOLOGY; Alzheimer’ s disease; mitochondrial dysfunctions; phytochemicals; reactive oxygen species (ROS); autophagy
ISSN
2076-3921
URI
https://pubs.kist.re.kr/handle/201004/117577
DOI
10.3390/antiox10010023
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE