Equitable Multiparty Quantum Communication Without a Trusted Third Party
- Authors
- Pramanik, Tanumoy; Lee, Dong-Hwa; Cho, Young-Wook; Lim, Hyang-Tag; Han, Sang-Wook; Jung, Hojoong; Moon, Sung; Lee, Kwang Jo; Kim, Yong-Su
- Issue Date
- 2020-12-29
- Publisher
- AMER PHYSICAL SOC
- Citation
- PHYSICAL REVIEW APPLIED, v.14, no.6
- Abstract
- Multiparty quantum communication provides delightful applications, including quantum cryptographic communication and quantum secret sharing. Quantum communication based on the Greenberg-Home-Zeilinger (GHZ) state measurement provides a practical way to implement multiparty quantum communication. With the standard spatially localized GHZ state measurement, however, information can be imbalanced among the communication parties that can cause significant problems in some applications of multiparty cryptographic communication, e.g., secret sharing. Here, we propose an equitable multiparty quantum communication where information balance among the communication parties is achieved without a trusted third party. Our scheme is based on the GHZ state measurement that is not spatially localized but implemented in a way that all the distant communication parties symmetrically participate. We also verify the feasibility of our scheme by presenting the proof-of-principle experimental demonstration of informationally balanced three-party quantum communication using weak coherent pulses.
- Keywords
- 2-PHOTON INTERFERENCE; KEY DISTRIBUTION; STATE; PROTOCOLS; SHARE; 2-PHOTON INTERFERENCE; KEY DISTRIBUTION; STATE; PROTOCOLS; SHARE; 양자통신; 양자얽힘; 양자정보; 양자광학
- ISSN
- 2331-7019
- URI
- https://pubs.kist.re.kr/handle/201004/117661
- DOI
- 10.1103/PhysRevApplied.14.064074
- Appears in Collections:
- KIST Article > 2020
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.