Quantification of purified endogenous miRNAs with high sensitivity and specificity

Authors
Shin, SoochulJung, YoonseokUhm, HeesooSong, MinseokSon, SoominGoo, JiyoungJeong, CherlhyunSong, Ji-JoonKim, V. NarryHohng, Sungchul
Issue Date
2020-12
Publisher
Nature Publishing Group
Citation
Nature Communications, v.11, no.1
Abstract
MicroRNAs (miRNAs) are short (19-24 nt) non-coding RNAs that suppress the expression of protein coding genes at the post-transcriptional level. Differential expression profiles of miRNAs across a range of diseases have emerged as powerful biomarkers, making a reliable yet rapid profiling technique for miRNAs potentially essential in clinics. Here, we report an amplification-free multi-color single-molecule imaging technique that can profile purified endogenous miRNAs with high sensitivity, specificity, and reliability. Compared to previously reported techniques, our technique can discriminate single base mismatches and single-nucleotide 3-tailing with low false positive rates regardless of their positions on miRNA. By preloading probes in Thermus thermophilus Argonaute (TtAgo), miRNAs detection speed is accelerated by more than 20 times. Finally, by utilizing the well-conserved linearity between single-molecule spot numbers and the target miRNA concentrations, the absolute average copy numbers of endogenous miRNA species in a single cell can be estimated. Thus our technique, Ago-FISH (Argonaute-based Fluorescence In Situ Hybridization), provides a reliable way to accurately profile various endogenous miRNAs on a single miRNA sensing chip.
Keywords
DNA-PAINT; MICRORNA; URIDYLATION; BIOGENESIS; RNAS; miRNA; Single molecule imaging; Argonaute; Ago-FISH
ISSN
2041-1723
URI
https://pubs.kist.re.kr/handle/201004/117747
DOI
10.1038/s41467-020-19865-9
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE