Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity-at Depth and in Real Time

Authors
Moreaux, Laurent C.Yatsenko, DimitriSacher, Wesley D.Choi, JaebinLee, ChanghyukKubat, Nicole J.Cotton, R. JamesBoyden, Edward S.Lin, Michael Z.Tian, LinTolias, Andreas S.Poon, Joyce K. S.Shepard, Kenneth L.Roukes, Michael L.
Issue Date
2020-10-14
Publisher
CELL PRESS
Citation
NEURON, v.108, no.1, pp.66 - 92
Abstract
We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics''; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm(3) volume of mouse cortex comprising similar to 100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.
Keywords
LIGHT-SHEET MICROSCOPY; LARGE-SCALE; 2-PHOTON MICROSCOPY; OPTICAL TOMOGRAPHY; NEURAL CIRCUITS; SILICON PROBES; WAVE-GUIDES; CALCIUM; NEURONS; RESOLUTION; LIGHT-SHEET MICROSCOPY; LARGE-SCALE; 2-PHOTON MICROSCOPY; OPTICAL TOMOGRAPHY; NEURAL CIRCUITS; SILICON PROBES; WAVE-GUIDES; CALCIUM; NEURONS; RESOLUTION
ISSN
0896-6273
URI
https://pubs.kist.re.kr/handle/201004/117993
DOI
10.1016/j.neuron.2020.09.043
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE