Full metadata record

DC Field Value Language
dc.contributor.authorHong, Soonil-
dc.contributor.authorKim, Geunjin-
dc.contributor.authorPark, Byoungwook-
dc.contributor.authorKim, Ju-Hyeon-
dc.contributor.authorKim, Junghwan-
dc.contributor.authorPak, Yusin-
dc.contributor.authorKim, Jehan-
dc.contributor.authorKwon, Sooncheol-
dc.contributor.authorLee, Kwanghee-
dc.date.accessioned2024-01-19T16:34:01Z-
dc.date.available2024-01-19T16:34:01Z-
dc.date.created2022-01-25-
dc.date.issued2020-09-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118152-
dc.description.abstract'Sol-gel'-processed transition metal oxide (TMO) thin films sandwiched by an organic photoactive layer and metal electrodes have proven to be a versatile interlayer for photovoltaics with long-term stability on the laboratory scale; however, chemical defects and dewetting (or shrinkage) processes during sol-gel synthesis on top of the photoactive layer often cause performance variations, impeding the development of large-area photovoltaic modules. Here, we demonstrate that a low surface energy difference at the organic interface allows long-range diffusion of metal ion precursors to promote continuous chemical synthesis associated with oxo-bridge formation. Using high-resolution Auger electron spectroscopy, we confirm that the resultant TMO thin film on top of the suitable surface has a defect-free and continuous metal-oxygen network (MON) with a high oxygen/metal ratio. Our findings can be applied to obtain organic/perovskite photovoltaic modules having long-term stability, approaching an efficiency of 4.2%/14.5% and maintaining over 80% of their initial efficiency for up to 1500 hours/2000 hours with an area of 10.8 cm(2)/9.06 cm(2).-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleDirect observation of continuous networks of 'sol-gel' processed metal oxide thin film for organic and perovskite photovoltaic modules with long-term stability-
dc.typeArticle-
dc.identifier.doi10.1039/d0ta02813d-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.8, no.36, pp.18659 - 18667-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume8-
dc.citation.number36-
dc.citation.startPage18659-
dc.citation.endPage18667-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000572173300052-
dc.identifier.scopusid2-s2.0-85091429377-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusFABRICATION-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE