Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorHa, Heon-Young-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorKim, Juyoung-
dc.contributor.authorHan, Jeongwoo-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorKim, Gyeung-Ho-
dc.contributor.authorLee, Tae-Ho-
dc.contributor.authorJang, Jae Hoon-
dc.contributor.authorChun, Dongwon-
dc.date.accessioned2024-01-19T17:02:27Z-
dc.date.available2024-01-19T17:02:27Z-
dc.date.created2021-09-02-
dc.date.issued2020-08-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118341-
dc.description.abstractLight element identification is necessary in materials research to obtain detailed insight into various material properties. However, reported techniques, such as scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectroscopy (EDS) have inadequate detection limits, which impairs identification. In this study, we achieved light element identification with nanoscale spatial resolution in a multi-component metal alloy through unsupervised machine learning algorithms of singular value decomposition (SVD) and independent component analysis (ICA). Improvement of the signal-to-noise ratio (SNR) in the STEM-EDS spectrum images was achieved by combining SVD and ICA, leading to the identification of a nanoscale N-depleted region that was not observed in as-measured STEM-EDS. Additionally, the formation of the nanoscale N-depleted region was validated using STEM-electron energy loss spectroscopy and multicomponent diffusional transformation simulation. The enhancement of SNR in STEM-EDS spectrum images by machine learning algorithms can provide an efficient, economical chemical analysis method to identify light elements at the nanoscale.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleNanoscale light element identification using machine learning aided STEM-EDS-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-020-70674-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationScientific Reports, v.10, no.1-
dc.citation.titleScientific Reports-
dc.citation.volume10-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000563546400031-
dc.identifier.scopusid2-s2.0-85089419968-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusAUSTENITIC STAINLESS-STEELS-
dc.subject.keywordPlusATOM-PROBE TOMOGRAPHY-
dc.subject.keywordPlusINDEPENDENT COMPONENT ANALYSIS-
dc.subject.keywordPlusAGING PRECIPITATION BEHAVIOR-
dc.subject.keywordPlusHIGH-NITROGEN-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusDISCONTINUOUS PRECIPITATION-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusCORROSION-
dc.subject.keywordPlusCR2N-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE