Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Hong-Kyu | - |
dc.contributor.author | Ha, Heon-Young | - |
dc.contributor.author | Bae, Jee Hwan | - |
dc.contributor.author | Cho, Min Kyung | - |
dc.contributor.author | Kim, Juyoung | - |
dc.contributor.author | Han, Jeongwoo | - |
dc.contributor.author | Suh, Jin-Yoo | - |
dc.contributor.author | Kim, Gyeung-Ho | - |
dc.contributor.author | Lee, Tae-Ho | - |
dc.contributor.author | Jang, Jae Hoon | - |
dc.contributor.author | Chun, Dongwon | - |
dc.date.accessioned | 2024-01-19T17:02:27Z | - |
dc.date.available | 2024-01-19T17:02:27Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/118341 | - |
dc.description.abstract | Light element identification is necessary in materials research to obtain detailed insight into various material properties. However, reported techniques, such as scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectroscopy (EDS) have inadequate detection limits, which impairs identification. In this study, we achieved light element identification with nanoscale spatial resolution in a multi-component metal alloy through unsupervised machine learning algorithms of singular value decomposition (SVD) and independent component analysis (ICA). Improvement of the signal-to-noise ratio (SNR) in the STEM-EDS spectrum images was achieved by combining SVD and ICA, leading to the identification of a nanoscale N-depleted region that was not observed in as-measured STEM-EDS. Additionally, the formation of the nanoscale N-depleted region was validated using STEM-electron energy loss spectroscopy and multicomponent diffusional transformation simulation. The enhancement of SNR in STEM-EDS spectrum images by machine learning algorithms can provide an efficient, economical chemical analysis method to identify light elements at the nanoscale. | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Nanoscale light element identification using machine learning aided STEM-EDS | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s41598-020-70674-y | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Scientific Reports, v.10, no.1 | - |
dc.citation.title | Scientific Reports | - |
dc.citation.volume | 10 | - |
dc.citation.number | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000563546400031 | - |
dc.identifier.scopusid | 2-s2.0-85089419968 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | AUSTENITIC STAINLESS-STEELS | - |
dc.subject.keywordPlus | ATOM-PROBE TOMOGRAPHY | - |
dc.subject.keywordPlus | INDEPENDENT COMPONENT ANALYSIS | - |
dc.subject.keywordPlus | AGING PRECIPITATION BEHAVIOR | - |
dc.subject.keywordPlus | HIGH-NITROGEN | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | DISCONTINUOUS PRECIPITATION | - |
dc.subject.keywordPlus | RESOLUTION | - |
dc.subject.keywordPlus | CORROSION | - |
dc.subject.keywordPlus | CR2N | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.