On the oxygen vacancies optimization through Pr co-doping of ceria-based electrolytes for electrolyte-supported solid oxide fuel cells

Authors
Accardo, GraziaDell'Agli, GianfrancoSpiridigliozzi, LucaYoon, Sung PilFrattini, Domenico
Issue Date
2020-07-31
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.38, pp.19707 - 19719
Abstract
Praseodymium-doped ceria electrolyte powders are synthesized by a co-precipitation method using ammonium carbonate in little excess to fabricate a stable electrolytesupported solid oxide fuel cell able to operate in hydrogen conditions. Raman and X-ray Photoelectron Spectroscopy are employed for the electrolyte characterization to check the distribution of vacancies and the initial oxidation state of Pr that influences the transport mechanism under the real operation of SOFCs. The optimum Pr concentration in the electrolyte is found to be 6 mol% of Pr and 14 mol% of Gd (sample 6Pr). The electrolytesupported cells fabricated with this composition are sintered at 1250 degrees C for 3 h and tested in different gas conditions and operating temperatures, showing a maximum power density of 305.31 mW.cm-2 at 530.36 mA-cm-2 (750 degrees C) in wet hydrogen conditions. Compared to standard cells fabricated with a gadolinium-doped ceria electrolyte sintered at 1500 degrees C, the 6Pr has long term stability performances with a power density loss of 17% after 100 h of operation. The results demonstrate the eligible use of this electrolyte under real operating environments. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords
PRASEODYMIUM DOPED CERIA; OPEN-CIRCUIT VOLTAGE; ELECTRICAL-PROPERTIES; CHEMICAL EXPANSION; IN-SITU; TEMPERATURE; SOFC; PERFORMANCE; FABRICATION; CONDUCTIVITY; PRASEODYMIUM DOPED CERIA; OPEN-CIRCUIT VOLTAGE; ELECTRICAL-PROPERTIES; CHEMICAL EXPANSION; IN-SITU; TEMPERATURE; SOFC; PERFORMANCE; FABRICATION; CONDUCTIVITY; Fuel cells; Ionic conduction; Rare earth compounds; Electrochemical impedance spectroscopy; Electrolyte-supported cell
ISSN
0360-3199
URI
https://pubs.kist.re.kr/handle/201004/118351
DOI
10.1016/j.ijhydene.2020.05.011
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE