Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Sangmin-
dc.contributor.authorPark, Bum Chul-
dc.contributor.authorLim, Seungho-
dc.contributor.authorYoon, Hong Yeol-
dc.contributor.authorJeon, Yoo Sang-
dc.contributor.authorKim, Byung-Soo-
dc.contributor.authorKim, Young Keun-
dc.contributor.authorKim, Kwangmeyung-
dc.date.accessioned2024-01-19T17:02:41Z-
dc.date.available2024-01-19T17:02:41Z-
dc.date.created2021-09-04-
dc.date.issued2020-07-29-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118353-
dc.description.abstractThe development of heat-generating magnetic nanostructures is critical for the effective management of tumors using magnetic hyperthermia. Herein, we demonstrate that polyethylene glycol (PEG)-coated iron oxide (magnetite, Fe3O4) multigranule nanoclusters (PEG-MGNCs) can enhance the efficiency of hyperthermia-based tumor suppression in vitro and in vivo. MGNCs consisting of granules (crystallites) measuring 22.9 nm in diameter were prepared via the hydrothermal polyol method, followed by the surface modification of MGNCs with PEG-dopamine. The freshly prepared PEG-MGNCs exhibit 145.9 +/- 10.2 nm diameter on average under aqueous conditions. The three-dimensional structures of PEG-MGNCs enhance the hyperthermic efficacy compared with PEGylated single iron-oxide nanoparticles (NPs), resulting in severe heat damage to tumor cells in vitro. In the SCC7 tumor-bearing mice, near-infrared fluorescence dye (Cy5.5)-labeled PEG-MGNCs are successfully accumulated in the tumor tissues because of NP-derived enhanced permeation and retention effect. Finally, the tumor growth is significantly suppressed in PEG-MGNC-treated mice after two-times heat generation by using a longitudinal solenoid, which can generate an alternating magnetic field under high-frequency (19.5 kA/m, 389 kHz) induction. This study shows for the first time that the PEG-MGNCs greatly enhance the hyperthermic efficacy of tumor treatment both in vitro and in vivo.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectMAGNETIC NANOPARTICLES-
dc.subjectSIZE-
dc.subjectDESIGN-
dc.subjectIMPACT-
dc.subjectMRI-
dc.subjectACCUMULATION-
dc.subjectMECHANISMS-
dc.subjectPRINCIPLES-
dc.subjectEFFICIENCY-
dc.subjectNANOCUBES-
dc.titleHeat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.0c07419-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.12, no.30, pp.33483 - 33491-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume12-
dc.citation.number30-
dc.citation.startPage33483-
dc.citation.endPage33491-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000557854700004-
dc.identifier.scopusid2-s2.0-85089707778-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMAGNETIC NANOPARTICLES-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusACCUMULATION-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusPRINCIPLES-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusNANOCUBES-
dc.subject.keywordAuthorhyperthermia-
dc.subject.keywordAuthorhigh frequency-
dc.subject.keywordAuthortheranostic-
dc.subject.keywordAuthoriron oxide nanoparticle-
dc.subject.keywordAuthormultigranule nanocluster-
dc.subject.keywordAuthorpolyethylene glycol-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE