Full metadata record

DC Field Value Language
dc.contributor.authorKim, Si Nyeon-
dc.contributor.authorChung, Ku Hoon-
dc.contributor.authorChoi, Jun Woo-
dc.contributor.authorLim, Sang Ho-
dc.date.accessioned2024-01-19T17:32:30Z-
dc.date.available2024-01-19T17:32:30Z-
dc.date.created2021-09-05-
dc.date.issued2020-05-15-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118618-
dc.description.abstractThe manipulation of the bias field of the free-layer in giant magnetoresistance spin-valves is of great importance in sensor applications because this feature dominantly affects the low-field sensitivity of magnetoresistance. In this study, it is demonstrated that the bias field of the free-layer can be manipulated by controlling the thickness of the pinned-layer deposited afterward. The key to success is the utilization of the magnetostatic interactions between the free-poles formed on the Neel walls in both free- and pinned-layers. Magnetostatic interactions play a role in stabilizing the antiparallel magnetization state and hence in suppressing the magnetization switching of the free-layer from an antiparallel to a parallel state. A nearly zero bias field is achieved for a Ta-buffered sample with a pinned-layer thickness of 1.75 nm, where a very high low-field sensitivity of 7.7 mV/mA.Oe is obtained. (C) 2020 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectMAGNETIC-PROPERTIES-
dc.subjectENHANCEMENT-
dc.subjectDEPENDENCE-
dc.subjectANISOTROPY-
dc.subjectSENSORS-
dc.subjectFILMS-
dc.subjectGMR-
dc.titleManipulation of free-layer bias field in giant-magnetoresistance spin valve by controlling pinned-layer thickness-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2020.153727-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.823-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume823-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000514857400050-
dc.identifier.scopusid2-s2.0-85077735392-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMAGNETIC-PROPERTIES-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusANISOTROPY-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusGMR-
dc.subject.keywordAuthorMagnetic thin films and multilayers-
dc.subject.keywordAuthorCrystal growth-
dc.subject.keywordAuthorMagnetoresistance-
dc.subject.keywordAuthorDomain structure-
dc.subject.keywordAuthorMagnetic measurements-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE