Tailoring H2O2 generation kinetics with magnesium alloys for efficient disinfection on titanium surface

Authors
Park, JiminJang, Gun HyukJung, Yeon WookSeo, HyunseonHan, Hyung-SeopLee, JoonhoSeo, YoungminJeon, HojeongOk, Myoung-RyulCha, Pil-RyungSeok, Hyun-KwangLee, Kwan HyiKim, Yu-Chan
Issue Date
2020-04
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.10, no.1
Abstract
A new antibacterial strategy for Ti has been developed without the use of any external antibacterial agents and surface treatments. By combining Mg alloys with Ti, H2O2, which is an oxidizing agent that kills bacteria, was spontaneously generated near the surface of Ti. Importantly, the H2O2 formation kinetics can be precisely controlled by tailoring the degradation rates of Mg alloys connected to Ti. Through microstructural and electrochemical modification of Mg with alloying elements (Ca, Zn), the degradation rates of Mg alloys were controlled, and the H2O2 release kinetics was accelerated when the degradation rate of Mg alloys increased. With the introduction of an in vivo assessment platform comprised of Escherichia coli (E. coli) and transgenic zebrafish embryos, we are able to design optimized antibacterial systems (Ti-Mg and Ti-Mg-3wt% Zn) that can selectively eradicate E. coli while not harming the survival rate, development, and biological functions of zebrafish embryos. We envision that our antibacterial strategy based on utilization of sacrificial Mg alloys could broaden the current palette of antibacterial platforms for metals.
Keywords
ZEBRAFISH; CORROSION; BIODEGRADATION; REDUCTION; TOXICITY; COATINGS; METALS; OXYGEN; magnesium alloys; disinfection; H2O2 generation; antibacterial; zebrafish
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/118803
DOI
10.1038/s41598-020-63007-6
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE