Ag flake/silicone rubber composite with high stability and stretching speed insensitive resistance via conductive bridge formation

Authors
Yoon, In SeonKim, Sun HongOh, YoungsuJu, Byeong-KwonHong, Jae-Min
Issue Date
2020-03-19
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.10, no.1
Abstract
High stability, stretchable speed insensitive properties, high stretchability, and electrical conductivity are key characteristics for the realisation of wearable devices. However, conventional research is mainly focused on achieving only high stretchability and electrical conductivity. Studies on the stability and stretching speed insensitive properties generally require complex fabrication processes, which are in need of further improvement. In this study, we propose a facile formation of a conductive bridge in composites by using surface damage and the viscoelastic property of the polymer. Surface cracks due to repeated stretching cycles formed conductive bridges via stress relaxation of the viscoelastic polymer matrix. The conductive bridge resulted in the conductor having highly stable resistance values at target strains and stretching speed insensitive resistance, even at stretching speeds that were 20 times faster than the minimum.
Keywords
PRINTABLE ELASTIC CONDUCTORS; STRAIN SENSOR; TRANSPARENT; ELECTRODES; ELASTOMERS; PRINTABLE ELASTIC CONDUCTORS; STRAIN SENSOR; TRANSPARENT; ELECTRODES; ELASTOMERS
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/118844
DOI
10.1038/s41598-020-61752-2
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE