Full metadata record

DC Field Value Language
dc.contributor.authorLee, HyunSeok-
dc.contributor.authorLim, Keun Yong-
dc.contributor.authorKim, Kwang-Bum-
dc.contributor.authorYu, Jae-Woong-
dc.contributor.authorChoi, Won Kook-
dc.contributor.authorChoi, Ji-Won-
dc.date.accessioned2024-01-19T18:01:45Z-
dc.date.available2024-01-19T18:01:45Z-
dc.date.created2021-09-04-
dc.date.issued2020-03-11-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/118858-
dc.description.abstractAll-solid-state thin-film batteries have been actively investigated as a power source for various microdevices. However, insufficient research has been conducted on thin-film encapsulation, which is an essential element of these batteries as solid electrolytes and Li anodes are vulnerable to moisture in the atmosphere. In this study, a hybrid thin-film encapsulation structure of hybrid SiOy/SiNxOy/a-SiNx:H/Parylene is suggested and investigated. The water-vapor transmission rate of hybrid thin-film encapsulation is estimated to be 4.9 x 10 (-3) g m(-2).day(-1), a value that is applicable to batteries as well as flexible solar cells, thin-film transistor liquid-crystal display, and E-papers. As a result of hybrid thin-film encapsulation, it is confirmed that the all-solid-state thin-film batteries are stable even after 100 charge/discharge cycles in the air atmosphere for 30 days and present a Coulombic efficiency of 99.8% even after 100 cycles in the air atmosphere. These results demonstrate that the thin-film encapsulation structure of hybrid SiOy/SiNxOy/a-SiNx:H/Parylene can be employed in thin-film batteries while retaining long-term stability.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectSCALABLE FABRICATION-
dc.subjectLITHIUM-
dc.titleHybrid Thin-Film Encapsulation for All-Solid-State Thin-Film Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.9b20471-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.12, no.10, pp.11504 - 11510-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume12-
dc.citation.number10-
dc.citation.startPage11504-
dc.citation.endPage11510-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000526609100019-
dc.identifier.scopusid2-s2.0-85081944088-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSCALABLE FABRICATION-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordAuthorthin-film batteries-
dc.subject.keywordAuthormicro batteries-
dc.subject.keywordAuthorthin-film encapsulation-
dc.subject.keywordAuthorsilicon oxynitride-
dc.subject.keywordAuthorparylene-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE