Structure-activity relationships of fluorene compounds inhibiting HCV variants

Authors
Kim, Hee SunYou, YoungsuMun, JaegonGadhe, Changdev G.Moon, HeejoLee, Jae SeungPae, Ae NimKohara, MichinoriKeum, GyochangKim, Byeong MoonJang, Sung Key
Issue Date
2020-02
Publisher
ELSEVIER
Citation
ANTIVIRAL RESEARCH, v.174
Abstract
Approximately 71 million people suffer from hepatitis C virus (HCV) infection worldwide. Persistent HCV infection causes liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, resulting in approximately 400,000 deaths annually. Effective direct-acting antiviral agents (DAAs) have been developed and are currently used for HCV treatment targeting the following three proteins: NS3/4A proteinase that cleaves the HCV polyprotein into various functional proteins, RNA-dependent RNA polymerase (designated as NS5B), and NS5A, which is required for the formation of double membrane vesicles serving as RNA replication organelles. At least one compound inhibiting NS5A is included in current HCV treatment regimens due to the high efficacy and low toxicity of drugs targeting NS5A. Here we report fluorene compounds showing strong inhibitory effects on GT 1b and 3a of HCV. Moreover, some compounds were effective against resistance-associated variants to DAAs. The structure-activity relationships of the compounds were analyzed. Furthermore, we investigated the molecular bases of the inhibitory activities of some compounds by the molecular docking method.
Keywords
HEPATITIS-C VIRUS; NONSTRUCTURAL PROTEIN; CRYSTAL-STRUCTURE; RNA REPLICATION; RESISTANCE; DOMAIN; HEPATITIS-C VIRUS; NONSTRUCTURAL PROTEIN; CRYSTAL-STRUCTURE; RNA REPLICATION; RESISTANCE; DOMAIN; Hepatitis c virus; Direct-acting antiviral agent (DAA); NS5A inhibitor; Resistance-associated variant (RAV); Structure-activity relationship (SAR); Molecular docking
ISSN
0166-3542
URI
https://pubs.kist.re.kr/handle/201004/119031
DOI
10.1016/j.antiviral.2019.104678
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE