Stacking Fault Energy Analyses of Additively Manufactured Stainless Steel 316L and CrCoNi Medium Entropy Alloy Using In Situ Neutron Diffraction

Authors
Woo, W.Jeong, J. S.Kim, D. -K.Lee, C. M.Choi, S. -H.Suh, J. -Y.Lee, S. Y.Harjo, S.Kawasaki, T.
Issue Date
2020-01-28
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.10, no.1
Abstract
Stacking fault energies (SFE) were determined in additively manufactured (AM) stainless steel (SS 316 L) and equiatomic CrCoNi medium-entropy alloys. AM specimens were fabricated via directed energy deposition and tensile loaded at room temperature. In situ neutron diffraction was performed to obtain a number of faulting-embedded diffraction peaks simultaneously from a set of (hkl) grains during deformation. The peak profiles diffracted from imperfect crystal structures were analyzed to correlate stacking fault probabilities and mean-square lattice strains to the SFE. The result shows that averaged SFEs are 32.8 mJ/m(2) for the AM SS 316 L and 15.1 mJ/m(2) for the AM CrCoNi alloys. Meanwhile, during deformation, the SFE varies from 46 to 21 mJ/m2 (AM SS 316 L) and 24 to 11 mJ/m(2) (AM CrCoNi) from initial to stabilized stages, respectively. The transient SFEs are attributed to the deformation activity changes from dislocation slip to twinning as straining. The twinning deformation substructure and atomic stacking faults were confirmed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The significant variance of the SFE suggests the critical twinning stress as 830 +/- 25 MPa for the AM SS 316 L and 790 +/- 40 MPa for AM CrCoNi, respectively.
Keywords
TWINNING-INDUCED PLASTICITY; DEFORMATION MICROSTRUCTURE; CRITICAL STRESS; HEAT-TREATMENT; EVOLUTION; BEHAVIOR; DEPENDENCE; MECHANISM; STRENGTH; TEXTURE; TWINNING-INDUCED PLASTICITY; DEFORMATION MICROSTRUCTURE; CRITICAL STRESS; HEAT-TREATMENT; EVOLUTION; BEHAVIOR; DEPENDENCE; MECHANISM; STRENGTH; TEXTURE
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/119072
DOI
10.1038/s41598-020-58273-3
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE