The structural fate of lipid nanoparticles in the extracellular matrix

Authors
Bandara, Sarith R.Molley, Thomas G.Kim, HojunBharath, Priyalini A.Kilian, Kristopher A.Leal, Cecilia
Issue Date
2020-01-01
Publisher
ROYAL SOC CHEMISTRY
Citation
MATERIALS HORIZONS, v.7, no.1, pp.125 - 134
Abstract
Drug-loaded liposomes are the most successful nanomedicine to date, with multiple FDA-approved systems for a myriad of diseases. While liposome circulation time in blood and retention in tissues have been studied in detail, the structural fate of liposomes-and nanoparticles in general-in the body has not been extensively investigated. Here, we explore the interactions of liposomes with synthetic and natural hydrogel materials to understand how the natural extracellular matrix influences liposome structural characteristics. Small angle X-ray scattering, confocal microscopy, and cryogenic transmission electron microscopy data demonstrate that poly(ethylene glycol) (PEG), gelatin, alginate, and Matrigel (R) hydrogels cause 200 nmliposomes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to transform into micrometer-sized aggregates. These aggregates are composed of multilamellar vesicles around 100 nm in diameter with a mean interlamellar separation of 5.5 nm. Protecting the liposomes with a corona of PEG damps this restructuring effect, making the multilamellar vesicles less stable. We attribute this unilamellar to multilamellar transition to an osmotic driving force from the hydrogel environment. This lipid restructuring has broad ramifications in the design and use of nanomedicines, and in understanding the fate and function of natural lipid-based materials within the tissue microenvironment.
Keywords
GOLD NANOPARTICLES; RENAL CLEARANCE; PROTEINS; DNA; LIPOSOMES; MECHANISM; HYDROGELS; SYSTEMS; CELL; GOLD NANOPARTICLES; RENAL CLEARANCE; PROTEINS; DNA; LIPOSOMES; MECHANISM; HYDROGELS; SYSTEMS; CELL
ISSN
2051-6347
URI
https://pubs.kist.re.kr/handle/201004/119109
DOI
10.1039/c9mh00835g
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE