Full metadata record

DC Field Value Language
dc.contributor.authorKim, Tae Kyoung-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorKim, Juyoung-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorJin, Sungho-
dc.contributor.authorChun, Dong Won-
dc.date.accessioned2024-01-19T18:32:09Z-
dc.date.available2024-01-19T18:32:09Z-
dc.date.created2021-09-04-
dc.date.issued2020-01-
dc.identifier.issn2637-6113-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119174-
dc.description.abstractHerein, the bulk micromachining of Si by a magnetically guided metal-assisted chemical etching (MACE) process is demonstrated. To improve the etching performance of Si, a trilayer metal catalyst (Au/Fe/Au) is deposited on Si to obtain faster etching speed by a magnetic pulling force. An annealing process is performed on the catalyst to obtain rougher surface morphologies due to agglomeration and improve ferromagnetic properties, which increase the etching rate for magnetically guided MACE. By the bulk micromachining of Si through the introduced direction-controlled MACE technique with the annealing process, Si microsheet arrays are fabricated. We show that vertically aligned Si microsheet arrays are produced within 17 h of etching, even at an etching thickness of over 500 pm, by magnetically guided MACE under a fixed vertical magnetic pulling force. Moreover, introducing magnetically guided MACE can fabricate Si microhole arrays in various dimensions by adjusting pattern size and etching time. Curved Si microhole arrays are fabricated by altering the direction of the magnetic pulling force by changing the position of the hard magnet, which shows that the etching direction is effectively adjusted during the bulk micromachining of Si. The etching method developed here can be applied to cost-effective bulk Si slicing processes.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleBulk Micromachining of Si by Annealing-Driven Magnetically Guided Metal-Assisted Chemical Etching-
dc.typeArticle-
dc.identifier.doi10.1021/acsaelm.9b00746-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED ELECTRONIC MATERIALS, v.2, no.1, pp.260 - 267-
dc.citation.titleACS APPLIED ELECTRONIC MATERIALS-
dc.citation.volume2-
dc.citation.number1-
dc.citation.startPage260-
dc.citation.endPage267-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000510530100033-
dc.identifier.scopusid2-s2.0-85087724724-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSILICON NANOWIRE ARRAYS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTMAH-
dc.subject.keywordPlusKOH-
dc.subject.keywordAuthorbulk micromachining-
dc.subject.keywordAuthorSi etching-
dc.subject.keywordAuthormagnetically guided metal-assisted chemical etching-
dc.subject.keywordAuthorannealing effect-
dc.subject.keywordAuthorcurved Si structure-
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE