Full metadata record

DC Field Value Language
dc.contributor.authorYu, Ilhwan-
dc.contributor.authorYe, Youngsin-
dc.contributor.authorMoon, Sangji-
dc.contributor.authorLee, Seoung-Ki-
dc.contributor.authorJoo, Yongho-
dc.date.accessioned2024-01-19T18:32:44Z-
dc.date.available2024-01-19T18:32:44Z-
dc.date.created2021-09-04-
dc.date.issued2019-12-06-
dc.identifier.issn2196-7350-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119210-
dc.description.abstractControlling the packing density and degree of alignment of carbon nanotubes is essential for obtaining optimal charge transport properties in carbon nanotube transistors. Here, a method is introduced for evaporative self-assembly at the air-water interface to deposit continuous films of well-aligned, uniform semiconducting bundle nanotubes for stretchable and bendable transistor applications. Polymer-wrapped nanotubes in organic ink are dropped on the water surface and diffused at the air-water interface to deposit aligned semiconducting single-walled carbon nanotubes on a partially submersed substrate. The speed dependency of the substrate is also elucidated. The optimized conditions enable alignment within +/- 5 degrees at a packing density of approximate to 12.5 nanotubes mu m(-1) with continuously well-ordered layers. The semiconducting single-walled carbon nanotube films enabled a high degree of stretchability, with the flexible nature of the ion gel maintaining the charge properties of the device. The resulting ion-gel-based field effect transistor devices have a high mobility of 5.11 cm(2) V-1 s(-1) and an on/off ratio >10(4) under both bending and elongation and demonstrate a continuous performance over 1000 stretching cycles.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectFINGERING INSTABILITY-
dc.subjectRAMAN-SPECTROSCOPY-
dc.subjectELECTRONICS-
dc.subjectARRAYS-
dc.subjectDISPERSION-
dc.subjectALIGNMENT-
dc.subjectDENSITY-
dc.subjectDRIVEN-
dc.titleA Bendable, Stretchable Transistor with Aligned Carbon Nanotube Films-
dc.typeArticle-
dc.identifier.doi10.1002/admi.201900945-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS INTERFACES, v.6, no.23-
dc.citation.titleADVANCED MATERIALS INTERFACES-
dc.citation.volume6-
dc.citation.number23-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000494084300001-
dc.identifier.scopusid2-s2.0-85076220757-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFINGERING INSTABILITY-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusDISPERSION-
dc.subject.keywordPlusALIGNMENT-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusDRIVEN-
dc.subject.keywordAuthorevaporative self-assembly-
dc.subject.keywordAuthorion gels-
dc.subject.keywordAuthorsemiconducting carbon nanotubes-
dc.subject.keywordAuthorstretchable transistors-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE