Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal-air batteries

Authors
Na, SubinLee, BoeunYoon, Woo YoungYim, TaeeunOh, Si Hyoung
Issue Date
2019-11
Publisher
한국공업화학회
Citation
Journal of Industrial and Engineering Chemistry, v.79, pp.409 - 417
Abstract
A composite consisting of lead ruthenate nanocrystals with an expanded pyrochlore structure on reduced graphene oxide nano-sheets, is reported as an efficient bifunctional catalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Comparative studies for ORR show that the composite produces highly positive synergic coupling effects, strengthening a four-electron catalytic route, i.e., more positive onset potential, higher limiting current density, much smaller Tafel slope, and more durable catalytic performance after thousands of voltammetric cycling than pristine material. The composite also functions as an excellent and durable OER catalyst, exceeding the performance of NiCo2O4 and RuO2. (C) 2019 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
Keywords
OXYGEN REDUCTION REACTION; ELECTROCATALYSTS; PYROCHLORES; ROUTE; NANOPARTICLES; PB2RU2O6.5; NANOSHEETS; STABILITY; CAPACITY; Rechargeable metal air batteries; Bifunctional catalyst; Expanded pyrochlore; Reduced graphene oxide; Composite
ISSN
1226-086X
URI
https://pubs.kist.re.kr/handle/201004/119379
DOI
10.1016/j.jiec.2019.07.015
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE