Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hong Hee-
dc.contributor.authorKumi, David O.-
dc.contributor.authorKim, Kiwoong-
dc.contributor.authorPark, Donghee-
dc.contributor.authorYi, Yeonjin-
dc.contributor.authorCho, So Hye-
dc.contributor.authorPark, Cheolmin-
dc.contributor.authorNtwaeaborwa, O. M.-
dc.contributor.authorChoi, Won Kook-
dc.date.accessioned2024-01-19T19:02:25Z-
dc.date.available2024-01-19T19:02:25Z-
dc.date.created2021-09-05-
dc.date.issued2019-10-09-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119458-
dc.description.abstractIn our study, to optimize the electron-hole balance through controlling the electron transport layer (ETL) in the QD-LEDs, four materials (ZnO, ZnGaO, ZnMgO, and ZnGaMgO NPs) were synthesized and applied to the QD-LEDs as ETLs. By doping ZnO NPs with Ga, the electrons easily inject due to the increased Fermi level of ZnO NPs, and as Mg is further doped, the valence band maximum (VBM) of ZnO NPs deepens and blocks the holes more efficiently. Also, at the interface of QD/ETLs, Mg reduces non-radiative recombination by reducing oxygen vacancy defects on the surface of ZnO NPs. As a result, the maximum luminance (L-max) and maximum luminance efficiency (LEmax) of QD-LEDs based on ZnGaMgO NPs reached 43 440 cd m(-2) and 15.4 cd A(-1). These results increased by 34%, 10% and 27% for the L-max and 450%, 88%, and 208% for the LEmax when compared with ZnO, ZnGaO, and ZnMgO NPs as ETLs.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectTHIN-FILM TRANSISTORS-
dc.subjectDOPED ZINC-OXIDE-
dc.subjectHIGHLY EFFICIENT-
dc.subjectNANOPARTICLES-
dc.subjectPERFORMANCE-
dc.subjectIMPROVEMENT-
dc.subjectINJECTION-
dc.titleOptimization of the electron transport in quantum dot light-emitting diodes by codoping ZnO with gallium (Ga) and magnesium (Mg)-
dc.typeArticle-
dc.identifier.doi10.1039/c9ra06976c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationRSC ADVANCES, v.9, no.55, pp.32066 - 32071-
dc.citation.titleRSC ADVANCES-
dc.citation.volume9-
dc.citation.number55-
dc.citation.startPage32066-
dc.citation.endPage32071-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000490133300031-
dc.identifier.scopusid2-s2.0-85073382700-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusDOPED ZINC-OXIDE-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusIMPROVEMENT-
dc.subject.keywordPlusINJECTION-
dc.subject.keywordAuthorZnO quantum dots-
dc.subject.keywordAuthorZnGaO-
dc.subject.keywordAuthorZnMgO-
dc.subject.keywordAuthorZn(Ga, Mg)O quantum dots-
dc.subject.keywordAuthorelectron transport layer-
dc.subject.keywordAuthorelectroluminescence-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE