Full metadata record

DC Field Value Language
dc.contributor.authorYoo, Seong-Jae-
dc.contributor.authorKwon, Hong-Beom-
dc.contributor.authorHong, Ui-Seon-
dc.contributor.authorKang, Dong-Hyun-
dc.contributor.authorLee, Sang-Myun-
dc.contributor.authorHan, Jangseop-
dc.contributor.authorHwang, Jungho-
dc.contributor.authorKim, Yong-Jun-
dc.date.accessioned2024-01-19T19:02:27Z-
dc.date.available2024-01-19T19:02:27Z-
dc.date.created2021-09-05-
dc.date.issued2019-10-08-
dc.identifier.issn1867-1381-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119460-
dc.description.abstractWe present a portable, inexpensive, and accurate microelectromechanical-system-based (MEMS-based) condensation particle counter (CPC) for sensitive and precise monitoring of airborne ultrafine particles (UFPs) at a point of interest. A MEMS-based CPC consists of two main parts: a MEMS-based condensation chip that grows UFPs to micro-sized droplets and a miniature optical particle counter (OPC) that counts single grown droplets with the light scattering method. A conventional conductive cooling-type CPC is miniaturized through MEMS technology and three-dimensional (3-D) printing techniques; the essential elements for growing droplets are integrated on a single glass slide. Our system is much more compact (75 mm x 130 mm x 50 mm), lightweight (205 g), and power-efficient (2.7 W) than commercial CPCs. In quantitative experiments, the results indicated that our system could detect UFPs with a diameter of 12.9 nm by growing them to micro-sized (3.1 mu m) droplets. Our system measured the UFP number concentration with high accuracy (mean difference within 4.1 %), and the number concentration range for which our system can count single particles is 7.99-6850 cm(-3). Thus, our system has the potential to be used for UFP monitoring in various environments (e.g., as an air filtration system, in high-precision industries utilizing clean rooms, and in indoor and outdoor atmospheres).-
dc.languageEnglish-
dc.publisherCOPERNICUS GESELLSCHAFT MBH-
dc.subjectNANOPARTICLES-
dc.subjectFABRICATION-
dc.subjectSTRESS-
dc.subjectSIZE-
dc.subjectCPC-
dc.titleMicroelectromechanical-system-based condensation particle counter for real-time monitoring of airborne ultrafine particles-
dc.typeArticle-
dc.identifier.doi10.5194/amt-12-5335-2019-
dc.description.journalClass1-
dc.identifier.bibliographicCitationATMOSPHERIC MEASUREMENT TECHNIQUES, v.12, no.10, pp.5335 - 5345-
dc.citation.titleATMOSPHERIC MEASUREMENT TECHNIQUES-
dc.citation.volume12-
dc.citation.number10-
dc.citation.startPage5335-
dc.citation.endPage5345-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000489561500002-
dc.identifier.scopusid2-s2.0-85073624684-
dc.relation.journalWebOfScienceCategoryMeteorology & Atmospheric Sciences-
dc.relation.journalResearchAreaMeteorology & Atmospheric Sciences-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusCPC-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE