Full metadata record

DC Field Value Language
dc.contributor.authorHyung, Sujin-
dc.contributor.authorLee, Seung-Ryeol-
dc.contributor.authorKim, Yeon Jee-
dc.contributor.authorBang, Seokyoung-
dc.contributor.authorTahk, Dongha-
dc.contributor.authorPark, Jong-Chul-
dc.contributor.authorSuh, Jun-Kyo Francis-
dc.contributor.authorJeon, Noo Li-
dc.date.accessioned2024-01-19T19:02:51Z-
dc.date.available2024-01-19T19:02:51Z-
dc.date.created2022-01-25-
dc.date.issued2019-10-
dc.identifier.issn0006-3592-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119482-
dc.description.abstractAxonal regeneration and remyelination of peripheral motor neurons (MNs) are critical for restoring neuromuscular motor function after injury or peripheral neuropathy. We examined whether optogenetically mediated light stimulation (OMLS) could enhance the axon outgrowth and myelination of MNs using three-dimensional motor neuron-Schwann cell (MN-SC) coculture on a microfluidic biochip. The biochip was designed to allow SCs to interact with the axons of MNs, while preventing direct contact between SCs and the cell bodies of MNs. Following coculture with SCs on the microfluidic biochip, MNs were transfected with a light-sensitive channelrhodopsin gene. Transfected MNs subjected to repeated light stimulation (20 Hz, 1 hr) produced significantly longer axons than nontransfected MNs. OMLS of MNs greatly increased the number of myelin basic protein (MBP)-expressing SCs, promoting the initiation of myelination of MNs. Ultrastructurally, OMLS of MNs markedly enhanced the thickness of the compact myelin sheath around the MN axons such that the average thickness was closer to that of the theoretical estimates in vivo. Thus, the MN-SC coculture model on a microfluidic biochip augmented by OMLS of MNs is a feasible platform for studying the relationship of neuronal activity with regrowth and remyelination.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleOptogenetic neuronal stimulation promotes axon outgrowth and myelination of motor neurons in a three-dimensional motor neuron-Schwann cell coculture model on a microfluidic biochip-
dc.typeArticle-
dc.identifier.doi10.1002/bit.27083-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOTECHNOLOGY AND BIOENGINEERING, v.116, no.10, pp.2425 - 2438-
dc.citation.titleBIOTECHNOLOGY AND BIOENGINEERING-
dc.citation.volume116-
dc.citation.number10-
dc.citation.startPage2425-
dc.citation.endPage2438-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000474307700001-
dc.identifier.scopusid2-s2.0-85068518803-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.type.docTypeArticle-
dc.subject.keywordPlusPERIPHERAL-NERVE-
dc.subject.keywordPlusELECTRICAL-STIMULATION-
dc.subject.keywordPlusNEUROTROPHIC FACTOR-
dc.subject.keywordPlusCULTURE PLATFORM-
dc.subject.keywordPlusOPTICAL CONTROL-
dc.subject.keywordPlusREGENERATION-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthormotor neuron (MN)-
dc.subject.keywordAuthormyelin-
dc.subject.keywordAuthoroptogenetically mediated light stimulation (OMLS)-
dc.subject.keywordAuthorperipheral nerve trauma-
dc.subject.keywordAuthorperipheral neuropathy-
dc.subject.keywordAuthorSchwann cell (SC)-

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE