Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells

Authors
Krishnan, N. NambiKonovalova, AnastasiiaAili, DavidLi, QingfengPark, Hyun SeoJang, Jong HyunKim, Hyoung-JuhnHenkensmeier, Dirk
Issue Date
2019-10
Publisher
ELSEVIER
Citation
JOURNAL OF MEMBRANE SCIENCE, v.588
Abstract
The degradation pathway of phosphoric acid doped polybenzimidazole membranes in high temperature polymer electrolyte membrane fuel cells depends on the acid contents. If it is high, creep is discussed as the main reason. If it is low (membranes prepared by solvent evaporation and post-doping), the main cause may be loss of acid due to evaporation. The net transport of acid to the anode side at high current densities should also lead to local softening of the membrane, which could be mitigated by crosslinking the membrane. Here we show that sulfonated para-polybenzimidazole membranes can be stabilized by curing at 350 degrees C. In contrast to meta-polybenzimidazole and sulfonated para-polybenzimidazole, crosslinked sulfonated para-polybenzimidazole is insoluble in dimethylacetamide at room temperature and phosphoric acid at 160 degrees C. At 160 degrees C and 5% relative humidity the conductivity of crosslinked sulfonated para-polybenzimidazole and meta-polybenzimidazole is 214 mS cm(-1) and 147 mS cm(-1), respectively. At 600 mA cm(-2), the voltage decay rate is 16 mu V h(-1), much lower than published for commercial meta-polybenzimidazole (308 mu V h(-1)). Furthermore, the average voltage at 600 mA cm(-2) is 523 mV, while a previously published cured meta-polybenzimidazole membrane only reaches 475 mV.
Keywords
HT-PEFC; SIDE-GROUPS; MIGRATION; High temperature polymer electrolyte fuel cell (HT PEMFC); Sulfonated polybenzimidazole; Thermal crosslinking; Stability; High current density
ISSN
0376-7388
URI
https://pubs.kist.re.kr/handle/201004/119502
DOI
10.1016/j.memsci.2019.117218
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE