Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts

Authors
Jung, Kyung-WonLee, Seon YongLee, Young JaeChoi, Jae-Woo
Issue Date
2019-10
Publisher
ELSEVIER SCIENCE BV
Citation
ULTRASONICS SONOCHEMISTRY, v.57, pp.22 - 28
Abstract
Bisphenol A (SPA) is an important emerging contaminant with endocrine-disrupting potential that has frequently been detected in aquatic environments. In this study, two types of hierarchically structured manganese dioxide/biochar nanocomposites (MnO2/BCs) were prepared for the first time via facile hydrothermal synthesis. The hydrothermal reaction was maintained at 100 degrees C for 6 h or 12 h, after which an ultrasound-assisted heterogeneous Fenton-like process was used to catalyze the removal of BPA under neutral pH condition. The characterization results indicated that MnO2 nanoparticles were successfully formed on the nanocomposite surfaces and had flower-like (delta-MnO2, 6 h) and urchin-like (alpha-MnO2, 12 h) morphology. This enabled a significant improvement in the catalytic activity of BPA removal by the reversible redox reaction. A series of experiments confirmed that the crystalline properties of the nanocomposites affected their catalytic activity. In particular, the alpha-MnO2/BCs exhibited catalytic activity in the ultrasound-assisted heterogeneous Fenton-like process and completely removed BPA within 20 min under the following conditions: [BPA](0) = 100 mu M; [H2O2](0) = 10 mM; [catalyst](0) = 0.5 g/L; ultrasound = 20 kHz (130 W) at 40% amplitude; pH = 7.0 +/- 0.1; and temperature = 25 +/- 1 degrees C. This efficiency may have been due to the synergistic effect of ultrasound and alpha-MnO2/BCs, which simultaneously induce the effective generation of reactive free radicals and increase the mass transfer rate at the solid-liquid interface. Overall, these results demonstrated that hierarchical urchin-like alpha-MnO2/BCs have significant potential as an efficient and low-cost catalyst in ultrasound-assisted heterogeneous Fenton-like systems.
Keywords
HYDROGEN-PEROXIDE ACTIVATION; PHOTOCATALYTIC DEGRADATION; SONOCATALYTIC DEGRADATION; ALPHA-MNO2 NANOWIRES; ADVANCED OXIDATION; BIOCHAR; NANOPARTICLES; PEROXYMONOSULFATE; MNO2; OZONATION; Bisphenol A; Ultrasound-assisted heterogeneous Fenton-like; Urchin-like alpha-MnO2; Biochar; Nanocomposites
ISSN
1350-4177
URI
https://pubs.kist.re.kr/handle/201004/119517
DOI
10.1016/j.ultsonch.2019.04.039
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE