Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP5 Anode

Authors
Haghighat-Shishavan, SafaNazarian-Samani, MasoudNazarian-Samani, MahboobehRoh, Ha-KyungChung, Kyung-YoonOh, Si-HyoungCho, Byung-WonKashani-Bozorg, Seyed FarshidKim, Kwang-Bum
Issue Date
2019-09-11
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.11, no.36, pp.32815 - 32825
Abstract
In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP5) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP5 in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries. Moreover, the hybrid delivers excellent rate-capability (symmetric and asymmetric) performance and remarkable reversible discharge capacities, even at high current rates, realizing ultradurable cycles in both applications. The findings of this investigation are expected to offer insights into the design and application of layered materials in various devices.
Keywords
LARGE-CAPACITY; LITHIUM; PHOSPHORUS; COMPOSITE; LARGE-CAPACITY; LITHIUM; PHOSPHORUS; COMPOSITE; germanium phosphide; layered structure; volume expansion control; mass transportation; solid-electrolyte interphase; energy storage
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/119574
DOI
10.1021/acsami.9b05900
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE