Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP5 Anode
- Authors
- Haghighat-Shishavan, Safa; Nazarian-Samani, Masoud; Nazarian-Samani, Mahboobeh; Roh, Ha-Kyung; Chung, Kyung-Yoon; Oh, Si-Hyoung; Cho, Byung-Won; Kashani-Bozorg, Seyed Farshid; Kim, Kwang-Bum
- Issue Date
- 2019-09-11
- Publisher
- American Chemical Society
- Citation
- ACS Applied Materials & Interfaces, v.11, no.36, pp.32815 - 32825
- Abstract
- In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP5) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP5 in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries. Moreover, the hybrid delivers excellent rate-capability (symmetric and asymmetric) performance and remarkable reversible discharge capacities, even at high current rates, realizing ultradurable cycles in both applications. The findings of this investigation are expected to offer insights into the design and application of layered materials in various devices.
- Keywords
- LARGE-CAPACITY; LITHIUM; PHOSPHORUS; COMPOSITE; LARGE-CAPACITY; LITHIUM; PHOSPHORUS; COMPOSITE; germanium phosphide; layered structure; volume expansion control; mass transportation; solid-electrolyte interphase; energy storage
- ISSN
- 1944-8244
- URI
- https://pubs.kist.re.kr/handle/201004/119574
- DOI
- 10.1021/acsami.9b05900
- Appears in Collections:
- KIST Article > 2019
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.