Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity

Authors
Lee, YoungjinKim, Byoung SikChoi, SanghyeonLee, Eun-YoungPark, ShinhyeHwang, JungwonKwon, YumiHyun, JaekyungLee, CheoljuKim, Jihyun F.Eom, Soo HyunKim, Myung Hee
Issue Date
2019-09-03
Publisher
NATL ACAD SCIENCES
Citation
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.116, no.36, pp.18031 - 18040
Abstract
Upon invading target cells, multifunctional autoprocessing repeats-in-toxin (MARTX) toxins secreted by bacterial pathogens release their disease-related modularly structured effector domains. However, it is unclear how a diverse repertoire of effector domains within these toxins are processed and activated. Here, we report that Makes caterpillars floppy-like effector (MCF)-containing MARTX toxins require ubiquitous ADP-ribosylation factor (ARF) proteins for processing and activation of intermediate effector modules, which localize in different subcellular compartments following limited processing of holo effector modules by the internal cysteine protease. Effector domains structured tandemly with MCF in intermediate modules become disengaged and fully activated by MCF, which aggressively interacts with ARF proteins present at the same location as intermediate modules and is converted allosterically into a catalytically competent protease. MCF-mediated effector processing leads ultimately to severe virulence in mice via an MCF-mediated ARF switching mechanism across subcellular compartments. This work provides insight into how bacteria take advantage of host systems to induce systemic pathogenicity.
Keywords
CHOLERAE RTX TOXIN; SECRETORY PATHWAY; ACTIVATION; IDENTIFICATION; TRANSPORT; DOMAIN; CELLS; SALMONELLA; MECHANISM; DELIVERY; CHOLERAE RTX TOXIN; SECRETORY PATHWAY; ACTIVATION; IDENTIFICATION; TRANSPORT; DOMAIN; CELLS; SALMONELLA; MECHANISM; DELIVERY; MARTX toxin; effector; ADP-ribosylation factor protein
ISSN
0027-8424
URI
https://pubs.kist.re.kr/handle/201004/119595
DOI
10.1073/pnas.1905095116
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE