Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein

Authors
Kang, Bok EumLee, SungmooBaker, Bradley J.
Issue Date
2019-09
Publisher
ELSEVIER IRELAND LTD
Citation
NEUROSCIENCE RESEARCH, v.146, pp.13 - 21
Abstract
Genetically-Encoded Voltage Indicators (GEVIs) are capable of converting changes in membrane potential into an optical signal. Here, we focus on recent insights into the mechanism of ArcLight-type probes and the consequences of utilizing a pH-dependent Fluorescent Protein (FP). A negative charge on the exterior of the beta-can of the FP combined with a pH-sensitive FP enables voltage-dependent conformational changes to affect the fluorescence of the probe. This hypothesis implies that interaction/dimerization of the FP creates a microenvironment for the probe that is altered via conformational changes. This mechanism explains why a pH sensitive FP with a negative charge on the outside of the beta-can is needed, but also suggests that pH could affect the optical signal as well. To better understand the effects of pH on the voltage-dependent signal of ArcLight, the intracellular pH (pHi) was tested at pH 6.8, 7.2, or 7.8. The resting fluorescence of ArcLight gets brighter as the pHi increases, yet only pH 7.8 significantly affected the Delta F/F. ArcLight could also simultaneously report voltage and pH changes during the acidification of a neuron firing multiple action potentials revealing different buffering capacities of the soma versus the processes of the cell. (C) 2018 The Authors. Published by Elsevier B.V.
Keywords
STIMULUS-EVOKED CHANGES; CENTRAL-NERVOUS-SYSTEM; ACTION-POTENTIALS; INTRACELLULAR PH; SENSING DOMAIN; SENSORS; NEURONS; TRANSMISSION; INHIBITION; MECHANISMS; STIMULUS-EVOKED CHANGES; CENTRAL-NERVOUS-SYSTEM; ACTION-POTENTIALS; INTRACELLULAR PH; SENSING DOMAIN; SENSORS; NEURONS; TRANSMISSION; INHIBITION; MECHANISMS; GEVI; Voltage imaging; pH imaging; ArcLight; Super ecliptic pHluorin
ISSN
0168-0102
URI
https://pubs.kist.re.kr/handle/201004/119618
DOI
10.1016/j.neures.2018.10.006
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE