Full metadata record

DC Field Value Language
dc.contributor.authorLee, Sechan-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorJung, Sung-Kyun-
dc.contributor.authorKu, Kyojin-
dc.contributor.authorKwon, Giyun-
dc.contributor.authorSeong, Won Mo-
dc.contributor.authorKim, Hyungsub-
dc.contributor.authorYoon, Gabin-
dc.contributor.authorKang, Inyeong-
dc.contributor.authorHong, Kootak-
dc.contributor.authorJang, Ho Won-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2024-01-19T20:00:13Z-
dc.date.available2024-01-19T20:00:13Z-
dc.date.created2021-09-02-
dc.date.issued2019-07-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119862-
dc.description.abstractOrganic redox compounds are potential substitutes for transition-metal-oxide electrode materials in rechargeable batteries because of their low cost, minimal environmental footprint, and chemical diversity. However, their inherently low electrical conductivity and high solubility in organic solvents are serious impediments to achieving performance comparable to that of currently used inorganic-based electrode materials. Herein, we report organic charge-transfer complexes as a novel class of electrode materials with intrinsically high electrical conductivity and low solubility that can potentially overcome the chronic drawbacks associated with organic electrodes. The formation of the charge-transfer complexes, phenazine-7,7,8,8-tetracyanoquinodimethane and dibenzo-1,4-dioxin-7,7,8,8-tetracyanoquinodimethane, via a room-temperature process leads to enhancement in the electrical conductivity and reduction in the dissolution resulting in the high power and cycle performances that far outperform those of each single-moiety counterpart. This finding demonstrates the general applicability of the charge-transfer complex to simultaneously improve the electrical conductivity and mitigate the shortcomings of existing single-moiety-based organic electrode materials, and opens up an uncharted pathway toward the development of high-performance organic electrode materials via the exploration of various combinations of donor-acceptor monomers with different stoichiometry.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleCharge-transfer complexes for high-power organic rechargeable batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2019.05.001-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.20, pp.462 - 469-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume20-
dc.citation.startPage462-
dc.citation.endPage469-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000472961700044-
dc.identifier.scopusid2-s2.0-85066074718-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusPACKING ARRANGEMENT-
dc.subject.keywordPlusMOLECULAR-COMPOUNDS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusDERIVATIVES-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusACCEPTOR-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordAuthorOrganic rechargeable batteries-
dc.subject.keywordAuthorCharge-transfer complex-
dc.subject.keywordAuthorHigh power organic electrodes-
dc.subject.keywordAuthorDonor-acceptor complex-
dc.subject.keywordAuthorNovel organic electrode material candidates-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE