Spin transparency for the interface of an ultrathin magnet within the spin dephasing length

Authors
Kim, Kyoung-Whan
Issue Date
2019-06-12
Publisher
AMER PHYSICAL SOC
Citation
Physical Review B, v.99, no.22
Abstract
We examine a modified drift-diffusion formalism to describe spin transport near an ultrathin magnet whose thickness is similar to or less than the spin dephasing length. Most of the previous theories on spin torque assume the transverse component of a injected spin current dephases perfectly thus are fully absorbed into the ferromagnet. However, in the state-of-art multilayer systems under consideration of recent studies, the thicknesses of ferromagnets are on the order of or less than a nanometer, thus one cannot safely assume the spin dephasing to be perfect. To describe the effects of a finite dephasing rate, we adopt the concept of transmitted mixing conductance, whose application to the drift-diffusion formalism has been limited. For a concise description of physical consequences, we introduce an effective spin transparency. Interestingly, for an ultrathin magnet with a finite dephasing rate, the spin transparency can be even enhanced and there arises a non-negligible fieldlike spin-orbit torque even in the absence of the imaginary part of the spin mixing conductance. The effective spin transparency provides a simple extension of the drift-diffusion formalism, which is accessible to experimentalists analyzing their results.
Keywords
CURRENT-DRIVEN DYNAMICS; TORQUE; TRANSPORT; SKYRMIONS; CURRENT-DRIVEN DYNAMICS; TORQUE; TRANSPORT; SKYRMIONS; 스핀 확산; 스핀 홀 효과; 스핀 토크; 스핀 전류
ISSN
2469-9950
URI
https://pubs.kist.re.kr/handle/201004/119887
DOI
10.1103/PhysRevB.99.224415
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE