Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4 -SO3

Authors
Lee, Hee WonHuyen Tran DangKim, HonggonLee, UngHa, Jeong-MyeongJae, JunghoCheong, MinserkLee, Hyunjoo
Issue Date
2019-06
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citation
JOURNAL OF CATALYSIS, v.374, pp.230 - 236
Abstract
Although chloride-ligated Pt compounds like (bpym)PtCl2, K2PtCl4, and (DMSO)(2) PtCl2 has been reported to be highly active catalysts for the methane oxidation to methyl bisulfate (MBS) in oleum media, their applications is hampered by the catalyst deactivation to PtCl2. In this study, we investigated Pt black catalyzed methane oxidation, which has no ligand. A MBS yield of 82.1% with a selectivity of 96.5% was obtained at a catalyst loading of 1.6 mM at 180 degrees C, which proved the highest catalytic activity of Pt-black for this reaction. The reaction was thought to proceed by the dissolved Pt species, and no deactivation was observed during four consecutive experiments. However, at a concentration of over 30 mM, MBS yield fell due to the decomposition of MBS to CO2 on the surface of heterogeneous Pt(0). Vacuum distillation experiments showed the potential for isolating MBS from the oxidation product mixture as a major component. (C) 2019 Elsevier Inc. All rights reserved.
Keywords
LOW-TEMPERATURE OXIDATION; SOLID CATALYSTS; SULFURIC-ACID; LIGHT ALKANES; CONVERSION; CHEMICALS; SYSTEMS; IODINE; LOW-TEMPERATURE OXIDATION; SOLID CATALYSTS; SULFURIC-ACID; LIGHT ALKANES; CONVERSION; CHEMICALS; SYSTEMS; IODINE; Methane; Oxidation; Pt black; Oleum; Methyl bisulfate
ISSN
0021-9517
URI
https://pubs.kist.re.kr/handle/201004/119933
DOI
10.1016/j.jcat.2019.04.042
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE