Full metadata record

DC Field Value Language
dc.contributor.authorMun, Jihun-
dc.contributor.authorPark, Hyeji-
dc.contributor.authorPark, Jaeseo-
dc.contributor.authorJoung, DaeHwa-
dc.contributor.authorLee, Seoung-Ki-
dc.contributor.authorLeem, Juyoung-
dc.contributor.authorMyoung, Jae-Min-
dc.contributor.authorPark, Jonghoo-
dc.contributor.authorJeong, Soo-Hwan-
dc.contributor.authorChegal, Won C.-
dc.contributor.authorNam, SungWoo-
dc.contributor.authorKang, Sang-Woo-
dc.date.accessioned2024-01-19T20:31:26Z-
dc.date.available2024-01-19T20:31:26Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn2637-6113-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120180-
dc.description.abstractBatch growth of high-mobility (mu(FE) > 10 cm(2)V(-1)s(-1)) molybdenum disulfide (MoS2) films can be achieved by means of the chemical vapor deposition (CVD) method at high temperatures (>500 degrees C) on rigid substrates. Although high-temperature growth guarantees film quality, time- and cost-consuming transfer processes are required to fabricate flexible devices. In contrast, low-temperature approaches (<250 degrees C) for direct growth on polymer substrates have thus far achieved film growth with limited spatial homogeneity and electrical performance (mu(FE) is unreported). The growth of a high-mobility MoS2 film directly on a polymer substrate remains challenging. In this study, a novel low-temperature (250 degrees C) process to successfully overcome this challenge by kinetics-controlled metal-organic CVD (MOCVD) is proposed. Low-temperature MOCVD was achieved by maintaining the flux of an alkali-metal catalyst constant during the process; furthermore, MoS2 was directly synthesized on a polyimide (PI) substrate. The as-grown film exhibits a 4 in. wafer-scale uniformity, field-effect mobility of 10 cm(2)V(-1)s(-1), and on/off ratio of 10(5), which are comparable with those of high-temperature-grown MoS2. The directly fabricated flexible MoS2 field-effect transistors demonstrate excellent stability of electrical properties following a 1000 cycle bending test with a 1 mm radius.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectFIELD-EFFECT TRANSISTORS-
dc.subjectLARGE-AREA-
dc.subjectMONOLAYER MOS2-
dc.subjectATOMIC LAYERS-
dc.subjectPHASE GROWTH-
dc.subjectION GEL-
dc.subjectFILMS-
dc.subjectTRANSITION-
dc.subjectEVOLUTION-
dc.subjectSIO2-
dc.titleHigh-Mobility MoS2 Directly Grown on Polymer Substrate with Kinetics-Controlled Metal-Organic Chemical Vapor Deposition-
dc.typeArticle-
dc.identifier.doi10.1021/acsaelm.9b00078-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED ELECTRONIC MATERIALS, v.1, no.4, pp.608 - 616-
dc.citation.titleACS APPLIED ELECTRONIC MATERIALS-
dc.citation.volume1-
dc.citation.number4-
dc.citation.startPage608-
dc.citation.endPage616-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000496307900018-
dc.identifier.scopusid2-s2.0-85071116877-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusMONOLAYER MOS2-
dc.subject.keywordPlusATOMIC LAYERS-
dc.subject.keywordPlusPHASE GROWTH-
dc.subject.keywordPlusION GEL-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusSIO2-
dc.subject.keywordAuthorMoS2-
dc.subject.keywordAuthorkinetics-controlled MOCVD-
dc.subject.keywordAuthorlow-temperature growth-
dc.subject.keywordAuthordirect growth-
dc.subject.keywordAuthorflexible FET-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE