Carbon Nitride Phosphorus as an Effective Lithium Polysulfide Adsorbent fro Lithium-Sulfur Batteries

Authors
Do, VandungDeepikaKim, Mun SekKim, Min SeopLee, Kwang RyeolCho, Won Il
Issue Date
2019-03-27
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.11, no.12, pp.11431 - 11441
Abstract
Lithium-sulfur (Li-S) batteries are attracting substantial attention because of their high-energy densities and potential applications in portable electronics. However, an intrinsic property of Li-S systems, that is, the solubility of lithium polysulfides (LiPSs), hinders the commercialization of Li-S batteries. Herein, a new material, that is, carbon nitride phosphorus (CNP), is designed and synthesized as a superior LiPS adsorbent to overcome the issues of LiS batteries. Both the experimental results and the density functional theory (DFT) calculations confirm that CNP possesses the highest binding energy with LiPS at a P concentration of similar to 22% (CNP22). The DFT calculations explain the simultaneous existence of Li-N bonding and P-S coordination in the sulfur cathode when CNP22 interacts with LiPS. By introducing CNP22 into the Li-S systems, a sufficient charging capacity at a low cutoff voltage, that is, 2.45 V, is effectively implemented, to minimize the side reactions, and therefore, to prolong the cycling life of LiS systems. After 700 cycles, a Li-S cell with CNP22 gives a high discharge capacity of 850 mA h g(1) and a cycling stability with a decay rate of 0.041% cycle(1). The incorporation of CNP22 can achieve high performance in Li- batteries without concerns regarding the LiPS shuttling phenomenon
Keywords
SOLID-ELECTROLYTE INTERPHASES; INTERLAYER; ANODE; HOST; PROGRESS; SURFACE; SOLID-ELECTROLYTE INTERPHASES; INTERLAYER; ANODE; HOST; PROGRESS; SURFACE; carbon nitride phosphorus; lithium-sulfur batteries; adsorbent; lithium polysulfides; shuttling phenomenon; P-S bond; DFT calculation
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/120194
DOI
10.1021/acsami.8b22249
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE