RGB-Colored Cu(In,Ga)(S,Se)(2) Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters

Authors
Lee, SoyoungYoo, Gang YeolKim, ByungwooKim, Min KyuKim, ChangwookPark, Sang YeunYoon, Hee ChangKim, WoongMin, Byoung KounDo, Young Rag
Issue Date
2019-03-13
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.11, no.10, pp.9994 - 10003
Abstract
Colorful Cu(In,Ga)(S,Se)(2) (CIGSSe) thin-film solar cells were achieved by integrating a narrow-bandwidth stopband filter (NBSF) on a CIGSSe cell. The full range of visible color of NBSF could be realized by depositing one-dimensional nano-multilayers of alternating high-index (Al2O3) and low-index (SiO2) films while controlling the thickness of each layer and the number of stacked layers. Particularly, high-purity red, green, and blue (RGB) colors were generated on black CIGSSe cells with minimal harvest efficiency drop, showing power conversion efficiency (PCE) losses for the red and green CIGSSe cells of 4.2 and 1.2%, respectively, with no reduction in the PCE of the blue CIGSSe cell. The minimal drop in the harvest efficiency was attributed to the antireflection effect of the NBSF and the low overlap between the reflectance spectrum of NBSFs with a narrow stopband and the absorption spectrum of CIGSSe. The esthetic value could be further enhanced through the color variation of the RGB NBSF with viewing angle, so-called pearl-like colors. The synergetic effect of minimal efficiency loss, full color realization, and the pearl-like color change of the newly developed NBSFs can make CIGSSe cells applicable to building-integrated photovoltaics.
Keywords
POWER-CONVERSION EFFICIENCY; PHOTONIC CRYSTALS; ENERGY-STORAGE; WHITE-LIGHT; LAYER; MANAGEMENT; WINDOW; CHALCOPYRITE; PHOSPHOR; POWER-CONVERSION EFFICIENCY; PHOTONIC CRYSTALS; ENERGY-STORAGE; WHITE-LIGHT; LAYER; MANAGEMENT; WINDOW; CHALCOPYRITE; PHOSPHOR; CIGSSe solar cells; colorful solar cells; narrow-bandwidth stopband filter; building-integrated photovoltaics; solution process
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/120214
DOI
10.1021/acsami.8b21853
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE