Heterogeneous Metal Oxide-Graphene Thorn-Bush Single Fiber as a Freestanding Chemiresistor

Authors
Jang, Ji SooYu, HayoungChoi, Seon-JinKoo, Won-TaeLee, JiyoungKim, Dong-HaKang, Joon-YoungJeong, Yong JinJeong, HyeonsuKim, Il-Doo
Issue Date
2019-03
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.11, no.10, pp.10208 - 10217
Abstract
The development of freestanding fiber-type chemiresistors, having high integration ability with various portable electronics including smart clothing systems, is highly demanding for the next-generation wearable sensing platforms. However, critical challenges stemming from the irreversible chemical sensing kinetics and weak reliability of the free-standing fiber-type chemiresistor hinder their practical use. In this work, for the first time, we report on the potential suitability of the freestanding and ultraporous reduced graphene oxide fiber functionalized with WO3 nanorods (porous WO3 NRs-RGO composite fiber) as a sensitive nitrogen dioxide (NO2) detector. By employing a tunicate cellulose nanofiber (TCNF), which is a unique animal-type cellulose, the numerous mesopores are formed on a wet-spun TCNF-GO composite fiber, unlike a bare GO fiber with dense surface structure. More interestingly, due to the superior wettability of TCNF, the aqueous tungsten precursor is uniformly adsorbed on an ultraporous TCNF-GO fiber, and subsequent heat treatment results in the thermal reduction of a TCNF-GO fiber and hierarchical growth of WO3 NRs perpendicular to the porous RGO fiber (porous WO3 NRs-RGO fiber). The freestanding porous WO3 NRs-RGO fiber shows a notable response to 1 ppm NO2. Furthermore, we successfully demonstrate reversible NO2 sensing characteristics of the porous WO3 NRs-RGO fiber, which is integrated on a wrist-type wearable sensing device.
Keywords
LIQUID-CRYSTALS; CELLULOSE; FILM; TRANSITION; NANOTUBES; MEMBRANES; CATALYSTS; AREA; porous graphene fiber; liquid crystal; tunicate; nitrogen dioxide; gas sensor
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/120310
DOI
10.1021/acsami.8b22015
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE