Full metadata record

DC Field Value Language
dc.contributor.authorNoh, Myoung-Sub-
dc.contributor.authorLee, Hyunseok-
dc.contributor.authorSong, Young Geun-
dc.contributor.authorJung, Inki-
dc.contributor.authorNing, Ruiguang-
dc.contributor.authorPaek, Sung Wook-
dc.contributor.authorSong, Hyun-Cheol-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorKim, Sangtae-
dc.date.accessioned2024-01-19T20:33:50Z-
dc.date.available2024-01-19T20:33:50Z-
dc.date.created2021-09-02-
dc.date.issued2019-03-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120315-
dc.description.abstractConventional artificial muscles induce bending by aligning large-sized ions within the electrolyte upon bias application. Such design, alike many other actuator types, suffer from volatile actuation where the actuated position gets lost upon switch-off. Here, we develop a non-volatile artificial muscle with ion insertion electrode materials. Upon bias application, the inserted ions pose stress on the electrodes that sustain even after power shut-off. The demonstrated actuator consists of lithium germanide (LixGe) thin films deposited on both sides of a flexible polyimide (PI) substrate. The device exhibits 35.2 mm displacement when operated at 2 V and generates the blocking force of 0.67 mN. The observed stress and volume expansion reach 248 MPa and 8.2% for the 284 nm Li3Ge thin films, respectively. The actuated position is maintained against gravity with 12.1% decay in the actuated distance after 10 min. The novel actuator type proves the potential use of lithium insertion materials as actuation materials and shows that non-volatile actuation can be realized with ion-insertion electrodes.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectLITHIUM-ION BATTERY-
dc.subjectMECHANICAL STRESSES-
dc.subjectGERMANIUM-
dc.subjectELECTRODES-
dc.subjectLITHIATION-
dc.subjectDESIGN-
dc.titleLi alloy-based non-volatile actuators-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2018.12.095-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO ENERGY, v.57, pp.653 - 659-
dc.citation.titleNANO ENERGY-
dc.citation.volume57-
dc.citation.startPage653-
dc.citation.endPage659-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000458419000069-
dc.identifier.scopusid2-s2.0-85059532397-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERY-
dc.subject.keywordPlusMECHANICAL STRESSES-
dc.subject.keywordPlusGERMANIUM-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorArtificial Muscles-
dc.subject.keywordAuthorNon-Volatile Actuation-
dc.subject.keywordAuthorLi Alloys-
dc.subject.keywordAuthorElectrochemistry-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE