Quantitative Single-Cell Analysis of Isolated Cancer Cells with a Microwell Array

Authors
Kim, HojunPark, SungwookKang, Benedict J.Jeong, YoungdoLee, HyojinLee, Kwan Hyi
Issue Date
2019-02
Publisher
AMER CHEMICAL SOC
Citation
ACS COMBINATORIAL SCIENCE, v.21, no.2, pp.98 - 104
Abstract
The heterogeneous nature of tumor-cell populations suggests that quantitative analysis at the single-cell level may provide better insights into cancer biology. Specifically, detection of multiple biomarkers from a single cell offers important initial information about cellular behavior. However, conventional approaches limit biomarker detection at the single-cell level. Here, we fabricated a polymer microwell array to capture single cells from prostate-cancer cell lines and quantitatively analyzed the expression of three different cancer-related biomarkers, CD44, EpCAM, and PSMA, without a membrane protein-extraction step. The resulting information on cell-surface biomarker distributions was compared with that from other standard analytical techniques. Interestingly, a large variation in CD44-expression levels was observed when the cell-proliferation cycle was modulated. On the other hand, the expression levels of EpCAM in three different cell lines are consistent among the different analytical methods with the exception of the microarray, where it has a different substrate material to adhere to. This observation clearly emphasizes that biomarker choice and environmental control are critical for properly understanding the single-cell state.
Keywords
PROSTATE-CANCER; QUANTUM DOTS; EXPRESSION PROFILES; ANDROGEN RECEPTOR; FUSION GENES; HETEROGENEITY; CD44; ADENOCARCINOMA; MUTATION; PROSTATE-CANCER; QUANTUM DOTS; EXPRESSION PROFILES; ANDROGEN RECEPTOR; FUSION GENES; HETEROGENEITY; CD44; ADENOCARCINOMA; MUTATION; prostate cancer; quantitative profiling; laboratory techniques; single-cell analysis; quantum dots; microarray
ISSN
2156-8952
URI
https://pubs.kist.re.kr/handle/201004/120425
DOI
10.1021/acscombsci.8b00151
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE