A Fibrous Hybrid Patch Couples Cell-Derived Matrix and Poly(L-lactide-co-caprolactone) for Endothelial Cells Delivery and Skin Wound Repair

Authors
Du, PingCasavitri, CinintaSuhaeri, MuhammadWang, Peng-YuanLee, Jong HoKoh, Won-GunPark, Kwideok
Issue Date
2019-02
Publisher
AMER CHEMICAL SOC
Citation
ACS BIOMATERIALS SCIENCE & ENGINEERING, v.5, no.2, pp.900 - 910
Abstract
Skin wound healing is an intricate orchestration that involves different cell types, an extracellular matrix (ECM), cytokines, and growth factors. On the basis of the great benefits of cell-derived ECM in regenerative applications, here we propose an electrospun fibrous membrane that combines poly(L-lactide-co-caprolactone) (PLCL) and human fibroblast-derived ECM (hFDM). hFDM-deposited PLCL (hFDM-PLCL) was obtained via decellularization of a confluent layer of fibroblasts cultivated on PLCL. An organized assembly of fibrillar structure on hFDM-PLCL was notable via immunostaining. As human umbilical vein endothelial cells (HUVECs) were seeded on the hFDM-PLCL, they proliferated faster and exhibited more elongated, capillary-like morphology than those on PLCL or fibronectin-coated PLCL (Fn-PLCL). HUVECs have a relatively large aspect ratio, spreading area, and vinculin-positive area per cell on the fibrillary structure of hFDM-PLCL. In addition, transwell cell migration assay showed the chemoattractant effect of hFDM for HUVECs and human dermal fibroblasts. Furthermore, HUVECs-loaded hFDM-PLCL membranes showed the most promising therapeutic effects on a mouse skin wound model as proved via the wound closure rate, neovascularization effect, regenerated epidermis, and skin appendage. This study shows that biodegradable PLCL fibers not only support the weak mechanical properties of hFDM but also allow hFDM to reserve ECM macromolecules and to maintain structural integrity. Current results also demonstrate the critical role of hFDM with biochemical and biophysical cues on HUVECs adhesion, proliferation, and vascular morphogenesis in vitro and even on the wound healing process in vivo. Taken together, hFDM-functionalized PLCL patch should be a promising platform for cell delivery and regenerative applications.
Keywords
EXTRACELLULAR-MATRIX; VASCULAR MORPHOGENESIS; STEM-CELLS; DIFFERENTIATION; MIGRATION; MOIST; MODEL; EXTRACELLULAR-MATRIX; VASCULAR MORPHOGENESIS; STEM-CELLS; DIFFERENTIATION; MIGRATION; MOIST; MODEL; extracellular matrix (ECM); human fibroblast-derived extracellular matrix (hFDM); poly(L-lactide-co-caprolactone) (PLCL) fiber; electrospinning; skin wound healing
ISSN
2373-9878
URI
https://pubs.kist.re.kr/handle/201004/120436
DOI
10.1021/acsbiomaterials.8b01118
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE